A combinatorial proof of non-speciality of systems with at most 9 imposed base points

2009
journal article
article
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorDumnicki, Marcin - 127822 pl
dc.date.accession2020-01-29pl
dc.date.accessioned2020-01-29T07:39:38Z
dc.date.available2020-01-29T07:39:38Z
dc.date.issued2009pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical79-90pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume8pl
dc.identifier.eissn2300-133Xpl
dc.identifier.issn2081-545Xpl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/147790
dc.identifier.weblinkhttp://studmath.up.krakow.pl/index.php/studmath/article/view/87pl
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Na tych samych warunkach 4.0 Międzynarodowa*
dc.rights.licenceCC-BY-SA
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.enlinear systemspl
dc.subject.enfat pointspl
dc.subject.enHarbourne-Hirschowitz conjecturepl
dc.subtypeArticlepl
dc.titleA combinatorial proof of non-speciality of systems with at most 9 imposed base pointspl
dc.title.journalAnnales Universitatis Paedagogicae Cracoviensis. Studia Mathematicapl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Dumnicki, Marcin - 127822
dc.date.accessionpl
2020-01-29
dc.date.accessioned
2020-01-29T07:39:38Z
dc.date.available
2020-01-29T07:39:38Z
dc.date.issuedpl
2009
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
79-90
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
8
dc.identifier.eissnpl
2300-133X
dc.identifier.issnpl
2081-545X
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/147790
dc.identifier.weblinkpl
http://studmath.up.krakow.pl/index.php/studmath/article/view/87
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Na tych samych warunkach 4.0 Międzynarodowa
dc.rights.licence
CC-BY-SA
dc.rights.uri*
http://creativecommons.org/licenses/by-sa/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
linear systems
dc.subject.enpl
fat points
dc.subject.enpl
Harbourne-Hirschowitz conjecture
dc.subtypepl
Article
dc.titlepl
A combinatorial proof of non-speciality of systems with at most 9 imposed base points
dc.title.journalpl
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
12
Views per month
Views per city
Dublin
2
Wroclaw
2
Chandler
1
Des Moines
1
Downloads
dumnicki_a_combinatorial_proof_of_non-speciality_2009.pdf
24
dumnicki_a_combinatorial_proof_of_non-speciality_2009.odt
13