The modal logic of Bayesian belief revision

2019
journal article
article
6
dc.abstract.enIn Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished by the cardinality of the set of elementary propositions on which the agent’s prior is defined. Inclusions among the modal logics in the hierarchy are determined. By linking the modal logics in the hierarchy to the strongest modal companion of Medvedev’s logic of finite problems it is shown that the modal logic of belief revision determined by probabilities on a finite set of elementary propositions is not finitely axiomatizable.pl
dc.affiliationWydział Filozoficzny : Instytut Filozofiipl
dc.contributor.authorBrown, Williampl
dc.contributor.authorGyenis, Zalan - 379823 pl
dc.contributor.authorRédei, Miklóspl
dc.date.accessioned2019-12-16T13:23:04Z
dc.date.available2019-12-16T13:23:04Z
dc.date.issued2019pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number5pl
dc.description.physical809-824pl
dc.description.publication1pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume48pl
dc.identifier.doi10.1007/s10992-018-9495-9pl
dc.identifier.eissn1573-0433pl
dc.identifier.issn0022-3611pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.projectK 115593pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/129153
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enmodal logicpl
dc.subject.enBayesian inferencepl
dc.subject.enBayes learningpl
dc.subject.enBayes logicpl
dc.subject.enmedvedev framespl
dc.subtypeArticlepl
dc.titleThe modal logic of Bayesian belief revisionpl
dc.title.journalJournal of Philosophical Logicpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
In Bayesian belief revision a Bayesian agent revises his prior belief by conditionalizing the prior on some evidence using Bayes’ rule. We define a hierarchy of modal logics that capture the logical features of Bayesian belief revision. Elements in the hierarchy are distinguished by the cardinality of the set of elementary propositions on which the agent’s prior is defined. Inclusions among the modal logics in the hierarchy are determined. By linking the modal logics in the hierarchy to the strongest modal companion of Medvedev’s logic of finite problems it is shown that the modal logic of belief revision determined by probabilities on a finite set of elementary propositions is not finitely axiomatizable.
dc.affiliationpl
Wydział Filozoficzny : Instytut Filozofii
dc.contributor.authorpl
Brown, William
dc.contributor.authorpl
Gyenis, Zalan - 379823
dc.contributor.authorpl
Rédei, Miklós
dc.date.accessioned
2019-12-16T13:23:04Z
dc.date.available
2019-12-16T13:23:04Z
dc.date.issuedpl
2019
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
5
dc.description.physicalpl
809-824
dc.description.publicationpl
1
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
48
dc.identifier.doipl
10.1007/s10992-018-9495-9
dc.identifier.eissnpl
1573-0433
dc.identifier.issnpl
0022-3611
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.projectpl
K 115593
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/129153
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
modal logic
dc.subject.enpl
Bayesian inference
dc.subject.enpl
Bayes learning
dc.subject.enpl
Bayes logic
dc.subject.enpl
medvedev frames
dc.subtypepl
Article
dc.titlepl
The modal logic of Bayesian belief revision
dc.title.journalpl
Journal of Philosophical Logic
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
15
Views per month
Views per city
Des Moines
6
Ashburn
4
Wroclaw
2
Dublin
1
Singapore
1
Downloads
brown_gyenis_redel_the_modal_logic_of_bayesian_belief_revision_2019.pdf
24
brown_gyenis_redel_the_modal_logic_of_bayesian_belief_revision_2019.odt
3