Can error mitigation improve trainability of noisy variational quantum algorithms?

2024
journal article
article
12
dc.abstract.enVariational Quantum Algorithms (VQAs) are often viewed as the best hope for near-term quantum advantage. However, recent studies have shown that noise can severely limit the trainability of VQAs, e.g., by exponentially flattening the cost landscape and suppressing the magnitudes of cost gradients. Error Mitigation (EM) shows promise in reducing the impact of noise on near-term devices. Thus, it is natural to ask whether EM can improve the trainability of VQAs. In this work, we first show that, for a broad class of EM strategies, exponential cost concentration cannot be resolved without committing exponential resources elsewhere. This class of strategies includes as special cases Zero Noise Extrapolation, Virtual Distillation, Probabilistic Error Cancellation, and Clifford Data Regression. Second, we perform analytical and numerical analysis of these EM protocols, and we find that some of them (e.g., Virtual Distillation) can make it harder to resolve cost function values compared to running no EM at all. As a positive result, we do find numerical evidence that Clifford Data Regression (CDR) can aid the training process in certain settings where cost concentration is not too severe. Our results show that care should be taken in applying EM protocols as they can either worsen or not improve trainability. On the other hand, our positive results for CDR highlight the possibility of engineering error mitigation methods to improve trainability.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorWang, Samson
dc.contributor.authorCzarnik, Piotr - 115436
dc.contributor.authorArrasmith, Andrew
dc.contributor.authorCerezo, M.
dc.contributor.authorCincio, Lukasz
dc.contributor.authorColes, Patrick J.
dc.date.accessioned2025-02-04T14:30:36Z
dc.date.available2025-02-04T14:30:36Z
dc.date.createdat2025-02-03T09:43:57Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume8
dc.identifier.articleid1287
dc.identifier.doi10.22331/q-2024-03-14-1287
dc.identifier.eissn2521-327X
dc.identifier.issn2521-327X
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/546994
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titleCan error mitigation improve trainability of noisy variational quantum algorithms?
dc.title.journalQuantum
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Variational Quantum Algorithms (VQAs) are often viewed as the best hope for near-term quantum advantage. However, recent studies have shown that noise can severely limit the trainability of VQAs, e.g., by exponentially flattening the cost landscape and suppressing the magnitudes of cost gradients. Error Mitigation (EM) shows promise in reducing the impact of noise on near-term devices. Thus, it is natural to ask whether EM can improve the trainability of VQAs. In this work, we first show that, for a broad class of EM strategies, exponential cost concentration cannot be resolved without committing exponential resources elsewhere. This class of strategies includes as special cases Zero Noise Extrapolation, Virtual Distillation, Probabilistic Error Cancellation, and Clifford Data Regression. Second, we perform analytical and numerical analysis of these EM protocols, and we find that some of them (e.g., Virtual Distillation) can make it harder to resolve cost function values compared to running no EM at all. As a positive result, we do find numerical evidence that Clifford Data Regression (CDR) can aid the training process in certain settings where cost concentration is not too severe. Our results show that care should be taken in applying EM protocols as they can either worsen or not improve trainability. On the other hand, our positive results for CDR highlight the possibility of engineering error mitigation methods to improve trainability.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.author
Wang, Samson
dc.contributor.author
Czarnik, Piotr - 115436
dc.contributor.author
Arrasmith, Andrew
dc.contributor.author
Cerezo, M.
dc.contributor.author
Cincio, Lukasz
dc.contributor.author
Coles, Patrick J.
dc.date.accessioned
2025-02-04T14:30:36Z
dc.date.available
2025-02-04T14:30:36Z
dc.date.createdaten
2025-02-03T09:43:57Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
8
dc.identifier.articleid
1287
dc.identifier.doi
10.22331/q-2024-03-14-1287
dc.identifier.eissn
2521-327X
dc.identifier.issn
2521-327X
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/546994
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Can error mitigation improve trainability of noisy variational quantum algorithms?
dc.title.journal
Quantum
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
5
Views per month
Downloads
czarnik_et-al_can_error_mitigation_improve_trainability_2024.pdf
1