Dataset resulting from the user study on comprehensibility of explainable AI algorithms

2025
journal article
article
dc.abstract.enThis paper introduces a dataset that is the result of a user study on the comprehensibility of explainable artificial intelligence (XAI) algorithms. The study participants were recruited from 149 candidates to form three groups representing experts in the domain of mycology (DE), students with a data science and visualization background (IT) and students from social sciences and humanities (SSH). The main part of the dataset contains 39 transcripts of interviews during which participants were asked to complete a series of tasks and questions related to the interpretation of explanations of decisions of a machine learning model trained to distinguish between edible and inedible mushrooms. The transcripts were complemented with additional data that includes visualizations of explanations presented to the user, results from thematic analysis, recommendations of improvements of explanations provided by the participants, and the initial survey results that allow to determine the domain knowledge of the participant and data analysis literacy. The transcripts were manually tagged to allow for automatic matching between the text and other data related to particular fragments. In the advent of the area of rapid development of XAI techniques, the need for a multidisciplinary qualitative evaluation of explainability is one of the emerging topics in the community. Our dataset allows not only to reproduce the study we conducted, but also to open a wide range of possibilities for the analysis of the material we gathered.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.affiliationWydział Zarządzania i Komunikacji Społecznej : Instytut Studiów Informacyjnych
dc.contributor.authorBobek, Szymon - 428058
dc.contributor.authorKorycińska, Paloma - 129158
dc.contributor.authorKrakowska, Monika - 129418
dc.contributor.authorMozolewski, Maciej - 135129
dc.contributor.authorRak, Dorota - 182312
dc.contributor.authorZych, Magdalena - 176066
dc.contributor.authorWójcik, Magdalena - 147466
dc.contributor.authorNalepa, Grzegorz - 200414
dc.date.accessioned2025-06-25T11:29:16Z
dc.date.available2025-06-25T11:29:16Z
dc.date.createdat2025-06-09T12:22:35Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1
dc.description.versionostateczna wersja wydawcy
dc.description.volume12
dc.identifier.articleid1000
dc.identifier.doi10.1038/S41597-025-05167-6
dc.identifier.eissn2052-4463
dc.identifier.projectDRC IA
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/553674
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titleDataset resulting from the user study on comprehensibility of explainable AI algorithms
dc.title.journalScientific data
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
This paper introduces a dataset that is the result of a user study on the comprehensibility of explainable artificial intelligence (XAI) algorithms. The study participants were recruited from 149 candidates to form three groups representing experts in the domain of mycology (DE), students with a data science and visualization background (IT) and students from social sciences and humanities (SSH). The main part of the dataset contains 39 transcripts of interviews during which participants were asked to complete a series of tasks and questions related to the interpretation of explanations of decisions of a machine learning model trained to distinguish between edible and inedible mushrooms. The transcripts were complemented with additional data that includes visualizations of explanations presented to the user, results from thematic analysis, recommendations of improvements of explanations provided by the participants, and the initial survey results that allow to determine the domain knowledge of the participant and data analysis literacy. The transcripts were manually tagged to allow for automatic matching between the text and other data related to particular fragments. In the advent of the area of rapid development of XAI techniques, the need for a multidisciplinary qualitative evaluation of explainability is one of the emerging topics in the community. Our dataset allows not only to reproduce the study we conducted, but also to open a wide range of possibilities for the analysis of the material we gathered.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.affiliation
Wydział Zarządzania i Komunikacji Społecznej : Instytut Studiów Informacyjnych
dc.contributor.author
Bobek, Szymon - 428058
dc.contributor.author
Korycińska, Paloma - 129158
dc.contributor.author
Krakowska, Monika - 129418
dc.contributor.author
Mozolewski, Maciej - 135129
dc.contributor.author
Rak, Dorota - 182312
dc.contributor.author
Zych, Magdalena - 176066
dc.contributor.author
Wójcik, Magdalena - 147466
dc.contributor.author
Nalepa, Grzegorz - 200414
dc.date.accessioned
2025-06-25T11:29:16Z
dc.date.available
2025-06-25T11:29:16Z
dc.date.createdaten
2025-06-09T12:22:35Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
1
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
12
dc.identifier.articleid
1000
dc.identifier.doi
10.1038/S41597-025-05167-6
dc.identifier.eissn
2052-4463
dc.identifier.project
DRC IA
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/553674
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Dataset resulting from the user study on comprehensibility of explainable AI algorithms
dc.title.journal
Scientific data
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
45
Views per month
Views per city
Wroclaw
4
Skawina
3
Krakow
2
Sanka
2
Niepołomice
1
Warsaw
1
Downloads
bobek_et-al_dataset_resulting_from_the_user_study_on_comprehensibility_2025.pdf
3
s41597-025-05167-6.pdf
1