Local computation algorithms for hypergraph coloring – following Beck’s approach

2023
book section
conference proceedings
1
cris.lastimport.wos2024-04-10T01:13:55Z
dc.abstract.enWe investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma of the form $21−αk (∆ + 1)e < 1$, where ∆ is the bound on the maximum edge degree. The main question which arises here is for how large α there exists an LCA that is able to properly color such hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical sequential procedure of Beck from 1991 with Moser and Tardos’ Resample yields polylogarithmic LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range of instances by allowing α up to 1/3.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki Analitycznejpl
dc.conference50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
dc.conference.cityPaderborn
dc.conference.countryNiemcy
dc.conference.datefinish2023-07-14
dc.conference.datestart2023-07-10
dc.conference.seriesInternational Colloquium on Automata Languages and Programming
dc.conference.seriesshortcutICALP
dc.conference.seriesweblinkhttps://eatcs.org/index.php/conferences
dc.conference.shortcutICALP 2023
dc.conference.weblinkhttps://icalp2023.cs.upb.de/
dc.contributor.authorDorobisz, Andrzej - 187018 pl
dc.contributor.authorKozik, Jakub - 129355 pl
dc.contributor.editorEtessami, Koushapl
dc.contributor.editorFeige, Urielpl
dc.contributor.editorPuppis, Gabrielepl
dc.date.accessioned2023-08-21T10:16:27Z
dc.date.available2023-08-21T10:16:27Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.conftypeinternationalpl
dc.description.physical48:1-48:20pl
dc.description.seriesLeibniz International Proceedings in Informatics (LIPIcs)
dc.description.seriesnumber261
dc.description.versionostateczna wersja wydawcy
dc.identifier.bookweblinkhttps://www.worldcat.org/title/1394346518
dc.identifier.doi10.4230/LIPIcs.ICALP.2023.48pl
dc.identifier.isbn978-3-95977-278-5pl
dc.identifier.seriesissn1868-8969
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/317822
dc.languageengpl
dc.language.containerengpl
dc.pubinfoDagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatikpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enlocal computation algorithmspl
dc.subject.enhypergraph coloringpl
dc.subject.enproperty Bpl
dc.subtypeConferenceProceedingspl
dc.titleLocal computation algorithms for hypergraph coloring – following Beck’s approachpl
dc.title.container50th International Colloquium on Automata, Languages, and Programming ICALP 2023, July 10-14, 2023, Paderborn, Germanypl
dc.typeBookSectionpl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T01:13:55Z
dc.abstract.enpl
We investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma of the form $21−αk (∆ + 1)e < 1$, where ∆ is the bound on the maximum edge degree. The main question which arises here is for how large α there exists an LCA that is able to properly color such hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical sequential procedure of Beck from 1991 with Moser and Tardos’ Resample yields polylogarithmic LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range of instances by allowing α up to 1/3.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki Analitycznej
dc.conference
50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)
dc.conference.city
Paderborn
dc.conference.country
Niemcy
dc.conference.datefinish
2023-07-14
dc.conference.datestart
2023-07-10
dc.conference.series
International Colloquium on Automata Languages and Programming
dc.conference.seriesshortcut
ICALP
dc.conference.seriesweblink
https://eatcs.org/index.php/conferences
dc.conference.shortcut
ICALP 2023
dc.conference.weblink
https://icalp2023.cs.upb.de/
dc.contributor.authorpl
Dorobisz, Andrzej - 187018
dc.contributor.authorpl
Kozik, Jakub - 129355
dc.contributor.editorpl
Etessami, Kousha
dc.contributor.editorpl
Feige, Uriel
dc.contributor.editorpl
Puppis, Gabriele
dc.date.accessioned
2023-08-21T10:16:27Z
dc.date.available
2023-08-21T10:16:27Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.conftypepl
international
dc.description.physicalpl
48:1-48:20
dc.description.series
Leibniz International Proceedings in Informatics (LIPIcs)
dc.description.seriesnumber
261
dc.description.version
ostateczna wersja wydawcy
dc.identifier.bookweblink
https://www.worldcat.org/title/1394346518
dc.identifier.doipl
10.4230/LIPIcs.ICALP.2023.48
dc.identifier.isbnpl
978-3-95977-278-5
dc.identifier.seriesissn
1868-8969
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/317822
dc.languagepl
eng
dc.language.containerpl
eng
dc.pubinfopl
Dagstuhl : Schloss Dagstuhl - Leibniz-Zentrum für Informatik
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
local computation algorithms
dc.subject.enpl
hypergraph coloring
dc.subject.enpl
property B
dc.subtypepl
ConferenceProceedings
dc.titlepl
Local computation algorithms for hypergraph coloring – following Beck’s approach
dc.title.containerpl
50th International Colloquium on Automata, Languages, and Programming ICALP 2023, July 10-14, 2023, Paderborn, Germany
dc.typepl
BookSection
dspace.entity.type
Publication

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
15
Views per month
Views per city
Krakow
1
Downloads
dorobisz_kozik_local_computation_algorithms_for_hypergraph_coloring_2023.pdf
29