Simple view
Full metadata view
Authors
Statistics
Is lung density associated with severity of COVID-19?
CT scan
spiral CT
SARS Coronavirus
SARS-CoV
Bibliogr. s. e605-e606
Purpose: Emphysema and chronic obstructive lung disease were previously identified as major risk factors for severe disease progression in COVID-19. Computed tomography (CT)-based lung-density analysis offers a fast, reliable, and quantitative assessment of lung density. Therefore, we aimed to assess the benefit of CT-based lung density measurements to predict possible severe disease progression in COVID-19. Material and methods: Thirty COVID-19-positive patients were included in this retrospective study. Lung density was quantified based on routinely acquired chest CTs. Presence of COVID-19 was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Wilcoxon test was used to compare two groups of patients. A multivariate regression analysis, adjusted for age and sex, was employed to model the relative increase of risk for severe disease, depending on the measured densities. Results: Intensive care unit (ICU) patients or patients requiring mechanical ventilation showed a lower proportion of medium- and low-density lung volume compared to patients on the normal ward, but a significantly larger volume of high-density lung volume (12.26 dl IQR 4.65 dl vs. 7.51 dl vs. IQR 5.39 dl, p = 0.039). In multivariate regression analysis, high-density lung volume was identified as a significant predictor of severe disease. Conclusions: The amount of high-density lung tissue showed a significant association with severe COVID-19, with odds ratios of 1.42 (95% CI: 1.09-2.00) and 1.37 (95% CI: 1.03-2.11) for requiring intensive care and mechanical ventilation, respectively. Acknowledging our small sample size as an important limitation; our study might thus suggest that high-density lung tissue could serve as a possible predictor of severe COVID-19.
cris.lastimport.wos | 2024-04-10T01:55:35Z | |
dc.abstract.en | Purpose: Emphysema and chronic obstructive lung disease were previously identified as major risk factors for severe disease progression in COVID-19. Computed tomography (CT)-based lung-density analysis offers a fast, reliable, and quantitative assessment of lung density. Therefore, we aimed to assess the benefit of CT-based lung density measurements to predict possible severe disease progression in COVID-19. Material and methods: Thirty COVID-19-positive patients were included in this retrospective study. Lung density was quantified based on routinely acquired chest CTs. Presence of COVID-19 was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Wilcoxon test was used to compare two groups of patients. A multivariate regression analysis, adjusted for age and sex, was employed to model the relative increase of risk for severe disease, depending on the measured densities. Results: Intensive care unit (ICU) patients or patients requiring mechanical ventilation showed a lower proportion of medium- and low-density lung volume compared to patients on the normal ward, but a significantly larger volume of high-density lung volume (12.26 dl IQR 4.65 dl vs. 7.51 dl vs. IQR 5.39 dl, p = 0.039). In multivariate regression analysis, high-density lung volume was identified as a significant predictor of severe disease. Conclusions: The amount of high-density lung tissue showed a significant association with severe COVID-19, with odds ratios of 1.42 (95% CI: 1.09-2.00) and 1.37 (95% CI: 1.03-2.11) for requiring intensive care and mechanical ventilation, respectively. Acknowledging our small sample size as an important limitation; our study might thus suggest that high-density lung tissue could serve as a possible predictor of severe COVID-19. | pl |
dc.contributor.author | Bressem, Keno K. | pl |
dc.contributor.author | Adams, Lisa C. | pl |
dc.contributor.author | Albrecht, Jakob | pl |
dc.contributor.author | Petersen, Antonie | pl |
dc.contributor.author | Thieß, Hans-Martin | pl |
dc.contributor.author | Niehues, Alexandra | pl |
dc.contributor.author | Niehues, Stefan M. | pl |
dc.contributor.author | Vahldiek, Janis L. | pl |
dc.date.accessioned | 2020-11-17T09:43:44Z | |
dc.date.available | 2020-11-17T09:43:44Z | |
dc.date.issued | 2020 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.additional | Bibliogr. s. e605-e606 | pl |
dc.description.physical | e600-e606 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 85 | pl |
dc.identifier.doi | 10.5114/pjr.2020.100788 | pl |
dc.identifier.eissn | 1899-0967 | pl |
dc.identifier.issn | 1733-134X | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/253987 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY-NC-ND | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl | * |
dc.share.type | otwarte czasopismo | |
dc.subject.en | CT scan | pl |
dc.subject.en | spiral CT | pl |
dc.subject.en | SARS Coronavirus | pl |
dc.subject.en | SARS-CoV | pl |
dc.subtype | Article | pl |
dc.title | Is lung density associated with severity of COVID-19? | pl |
dc.title.journal | Polish Journal of Radiology | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
23
Views per month
Views per city
Downloads
Open Access