On the dimension of orbits of matrix pencils under strict equivalence

2026
journal article
article
dc.abstract.enWe prove that, given two matrix pencils 𝐿 and 𝑀, if 𝑀 belongs to the closure of the orbit of 𝐿 under strict equivalence, then the dimension of the orbit of 𝑀 is smaller than or equal to the dimension of the orbit of 𝐿, and the equality is only attained when 𝑀 belongs to the orbit of 𝐿. Our proof uses only the majorization involving the eigenstructures of 𝐿 and 𝑀 which characterizes the inclusion relationship between orbit closures, together with the formula for the codimension of the orbit of a pencil in terms of its eigenstruture.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorDe Terán, Fernando
dc.contributor.authorDopico, Froilán M.
dc.contributor.authorPagacz, Patryk - 106982
dc.date.accession2025-08-26
dc.date.accessioned2025-08-26T07:25:43Z
dc.date.available2025-08-26T07:25:43Z
dc.date.createdat2025-08-13T06:08:23Zen
dc.date.issued2026
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.sponsorshipidubidub_yes
dc.description.versionostateczna wersja wydawcy
dc.description.volume172
dc.identifier.articleid109695
dc.identifier.doi10.1016/j.aml.2025.109695
dc.identifier.issn0893-9659
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/559303
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleOn the dimension of orbits of matrix pencils under strict equivalence
dc.title.journalApplied Mathematics Letters
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We prove that, given two matrix pencils 𝐿 and 𝑀, if 𝑀 belongs to the closure of the orbit of 𝐿 under strict equivalence, then the dimension of the orbit of 𝑀 is smaller than or equal to the dimension of the orbit of 𝐿, and the equality is only attained when 𝑀 belongs to the orbit of 𝐿. Our proof uses only the majorization involving the eigenstructures of 𝐿 and 𝑀 which characterizes the inclusion relationship between orbit closures, together with the formula for the codimension of the orbit of a pencil in terms of its eigenstruture.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
De Terán, Fernando
dc.contributor.author
Dopico, Froilán M.
dc.contributor.author
Pagacz, Patryk - 106982
dc.date.accession
2025-08-26
dc.date.accessioned
2025-08-26T07:25:43Z
dc.date.available
2025-08-26T07:25:43Z
dc.date.createdaten
2025-08-13T06:08:23Z
dc.date.issued
2026
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.sponsorshipidub
idub_yes
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
172
dc.identifier.articleid
109695
dc.identifier.doi
10.1016/j.aml.2025.109695
dc.identifier.issn
0893-9659
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/559303
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
On the dimension of orbits of matrix pencils under strict equivalence
dc.title.journal
Applied Mathematics Letters
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Krakow
1
Warsaw
1
Downloads
pagacz_et-al_on_the_dimension_of_orbits_of_matrix_2026.pdf
6