Qsarna : an online tool for smart chemical space navigation in drug design

2025
journal article
article
dc.abstract.enDrug discovery is a lengthy and resource-intensive process that requires innovative computational techniques to expedite the transition from laboratory research to life-saving medications. Here, we introduce Qsarna, a comprehensive online platform that combines machine learning for activity prediction with traditional molecular docking to streamline virtual screening workflows. Our platform employs a fragment-based generative model, enabling the exploration of novel chemical spaces with the desired pharmacophoric features. Users can share results with others, and docking poses can be examined directly within the platform. In our case study, we successfully identified three new hits for monoamine oxidase B with nanomolar potency, which were later confirmed by experimental assays. The user-friendly web interface requires minimal computational expertise, making advanced virtual screening accessible to scientists regardless of their main field of study. Qsarna represents a significant advancement in computational drug discovery by seamlessly integrating complementary in silico approaches and democratizing access to advanced virtual screening technologies.
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.affiliationPion Prorektora ds. nauki : Małopolskie Centrum Biotechnologii
dc.affiliationWydział Chemii : Zakład Krystalochemii i Krystalofizyki
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.contributor.authorCieślak, Marcin - 257266
dc.contributor.authorŁęski, Jan
dc.contributor.authorKrzysztyńska-Kuleta, Olga - 167054
dc.contributor.authorKalinowska-Tłuścik, Justyna - 128600
dc.contributor.authorDanel, Tomasz - 231736
dc.date.accession2025-10-02
dc.date.accessioned2025-10-02T14:55:16Z
dc.date.available2025-10-02T14:55:16Z
dc.date.createdat2025-10-01T15:46:02Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number15
dc.description.physical7811–7816
dc.description.versionostateczna wersja wydawcy
dc.description.volume65
dc.identifier.doi10.1021/acs.jcim.5c00720
dc.identifier.eissn1549-960X
dc.identifier.issn1549-9596
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/561876
dc.identifier.weblinkhttps://pubs.acs.org/doi/10.1021/acs.jcim.5c00720
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleQsarna : an online tool for smart chemical space navigation in drug design
dc.title.journalJournal of Chemical Information and Modeling
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Drug discovery is a lengthy and resource-intensive process that requires innovative computational techniques to expedite the transition from laboratory research to life-saving medications. Here, we introduce Qsarna, a comprehensive online platform that combines machine learning for activity prediction with traditional molecular docking to streamline virtual screening workflows. Our platform employs a fragment-based generative model, enabling the exploration of novel chemical spaces with the desired pharmacophoric features. Users can share results with others, and docking poses can be examined directly within the platform. In our case study, we successfully identified three new hits for monoamine oxidase B with nanomolar potency, which were later confirmed by experimental assays. The user-friendly web interface requires minimal computational expertise, making advanced virtual screening accessible to scientists regardless of their main field of study. Qsarna represents a significant advancement in computational drug discovery by seamlessly integrating complementary in silico approaches and democratizing access to advanced virtual screening technologies.
dc.affiliation
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.affiliation
Pion Prorektora ds. nauki : Małopolskie Centrum Biotechnologii
dc.affiliation
Wydział Chemii : Zakład Krystalochemii i Krystalofizyki
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.contributor.author
Cieślak, Marcin - 257266
dc.contributor.author
Łęski, Jan
dc.contributor.author
Krzysztyńska-Kuleta, Olga - 167054
dc.contributor.author
Kalinowska-Tłuścik, Justyna - 128600
dc.contributor.author
Danel, Tomasz - 231736
dc.date.accession
2025-10-02
dc.date.accessioned
2025-10-02T14:55:16Z
dc.date.available
2025-10-02T14:55:16Z
dc.date.createdaten
2025-10-01T15:46:02Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
15
dc.description.physical
7811–7816
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
65
dc.identifier.doi
10.1021/acs.jcim.5c00720
dc.identifier.eissn
1549-960X
dc.identifier.issn
1549-9596
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/561876
dc.identifier.weblink
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00720
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
Qsarna : an online tool for smart chemical space navigation in drug design
dc.title.journal
Journal of Chemical Information and Modeling
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
8
Views per month
Views per city
Krakow
6
Singapore
1
Downloads
cieslak_et-al_qsarna_an_online_tool _2025.pdf
1