Optimising control of disease spread on networks

2005
journal article
article
dc.abstract.enWe consider models for control of epidemics on local, global, small-world and scale-free networks, with only partial information accessible about the status of individuals and their connections. The effectiveness of local (e.g. ring vaccination or culling) vs global (e.g. random vaccination) control measures is evaluated, with the aim of minimising the total cost of an epidemic. The costs include direct costs of treating infected individuals as well as costs of treatment. We first consider a random (global) vaccination strategy designed to stop any potential outbreak. We show that if the costs of the preventive vaccination are ignored, the optimal strategy is to vaccinate the whole population, although most of the resources are wasted on preventing a small number of cases. If the vaccination costs are included, or if a local strategy (within a certain neighbourhood of a symptomatic individual) is chosen, there is an optimum number of treated individuals. Inclusion of non-local contacts (,small-worlds' or scale-free networks) increases the levels of preventive (random) vaccination and radius of local treatment necessary for stopping the outbreak at a minimal cost. The number of initial foci also influences our choice of optimal strategy. The size of epidemics and the number of treated individuals increase for outbreaks that are initiated from a larger number of initial foci, but the optimal radius of local control actually decreases. The results are important for designing control strategies based on cost effectiveness.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorDybiec, Bartłomiej - 102110 pl
dc.contributor.authorKleczkowski, A.pl
dc.contributor.authorGilligan, C. A.pl
dc.date.accession2018-04-13pl
dc.date.accessioned2018-04-13T08:25:19Z
dc.date.available2018-04-13T08:25:19Z
dc.date.issued2005pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number5pl
dc.description.physical1509-1526pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume36pl
dc.identifier.eissn1509-5770pl
dc.identifier.issn0587-4254pl
dc.identifier.projectROD UJ / Ppl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/53370
dc.identifier.weblinkhttp://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=36&page=1509pl
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleOptimising control of disease spread on networkspl
dc.title.journalActa Physica Polonica. Bpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We consider models for control of epidemics on local, global, small-world and scale-free networks, with only partial information accessible about the status of individuals and their connections. The effectiveness of local (e.g. ring vaccination or culling) vs global (e.g. random vaccination) control measures is evaluated, with the aim of minimising the total cost of an epidemic. The costs include direct costs of treating infected individuals as well as costs of treatment. We first consider a random (global) vaccination strategy designed to stop any potential outbreak. We show that if the costs of the preventive vaccination are ignored, the optimal strategy is to vaccinate the whole population, although most of the resources are wasted on preventing a small number of cases. If the vaccination costs are included, or if a local strategy (within a certain neighbourhood of a symptomatic individual) is chosen, there is an optimum number of treated individuals. Inclusion of non-local contacts (,small-worlds' or scale-free networks) increases the levels of preventive (random) vaccination and radius of local treatment necessary for stopping the outbreak at a minimal cost. The number of initial foci also influences our choice of optimal strategy. The size of epidemics and the number of treated individuals increase for outbreaks that are initiated from a larger number of initial foci, but the optimal radius of local control actually decreases. The results are important for designing control strategies based on cost effectiveness.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Dybiec, Bartłomiej - 102110
dc.contributor.authorpl
Kleczkowski, A.
dc.contributor.authorpl
Gilligan, C. A.
dc.date.accessionpl
2018-04-13
dc.date.accessioned
2018-04-13T08:25:19Z
dc.date.available
2018-04-13T08:25:19Z
dc.date.issuedpl
2005
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
5
dc.description.physicalpl
1509-1526
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
36
dc.identifier.eissnpl
1509-5770
dc.identifier.issnpl
0587-4254
dc.identifier.projectpl
ROD UJ / P
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/53370
dc.identifier.weblinkpl
http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=36&page=1509
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Optimising control of disease spread on networks
dc.title.journalpl
Acta Physica Polonica. B
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
5
Views per month
Views per city
Boca Raton
2
Davao City
2
Gliwice
1
Downloads
dybiec_kleczkowski_gilligan_optimising_control_of_disease_spread_on_networks_2005.pdf
27
dybiec_kleczkowski_gilligan_optimising_control_of_disease_spread_on_networks_2005.odt
16