Simple view
Full metadata view
Authors
Statistics
Transformation of PET raw data into images for event classification using convolutional neural networks
positron emission tomography
convolutional neural network
kernel principal component analysis
medical imaging
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
cris.lastimport.wos | 2024-04-09T20:57:07Z | |
dc.abstract.en | In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom. | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego | pl |
dc.affiliation | Szkoła Doktorska Nauk Ścisłych i Przyrodniczych | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej | pl |
dc.contributor.author | Konieczka, Paweł | pl |
dc.contributor.author | Raczyński, Lech | pl |
dc.contributor.author | Wiślicki, Wojciech | pl |
dc.contributor.author | Fedoruk, Oleksandr | pl |
dc.contributor.author | Klimaszewski, Konrad - 242500 | pl |
dc.contributor.author | Kopka, Przemysław | pl |
dc.contributor.author | Krzemień, Wojciech | pl |
dc.contributor.author | Shopa, Roman Y. | pl |
dc.contributor.author | Baran, Jakub - 442955 | pl |
dc.contributor.author | Coussat, Aurélien - 462258 | pl |
dc.contributor.author | Chug, Neha - 417025 | pl |
dc.contributor.author | Curceanu, Catalina | pl |
dc.contributor.author | Czerwiński, Eryk - 102850 | pl |
dc.contributor.author | Dadgar, Meysam - 410039 | pl |
dc.contributor.author | Dulski, Kamil - 204579 | pl |
dc.contributor.author | Gajos, Aleksander - 164087 | pl |
dc.contributor.author | Hiesmayr, Beatrix C. | pl |
dc.contributor.author | Kacprzak, Krzysztof | pl |
dc.contributor.author | Kapłon, Łukasz - 115081 | pl |
dc.contributor.author | Korcyl, Grzegorz - 107362 | pl |
dc.contributor.author | Kozik, Tomasz - 129362 | pl |
dc.contributor.author | Kumar, Deepak - 448421 | pl |
dc.contributor.author | Niedźwiecki, Szymon - 115136 | pl |
dc.contributor.author | Parzych, Szymon - 369531 | pl |
dc.contributor.author | Perez del Rio, Elena - 444273 | pl |
dc.contributor.author | Sharma, Sushil - 200161 | pl |
dc.contributor.author | Shivani, Shivani - 381357 | pl |
dc.contributor.author | Skurzok, Magdalena - 106557 | pl |
dc.contributor.author | Stępień, Ewa - 161583 | pl |
dc.contributor.author | Tayefi Ardebili, Faranak - 424214 | pl |
dc.contributor.author | Moskal, Paweł - 100401 | pl |
dc.date.accessioned | 2024-01-12T15:36:16Z | |
dc.date.available | 2024-01-12T15:36:16Z | |
dc.date.issued | 2023 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.number | 8 | pl |
dc.description.physical | 14938-14958 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 20 | pl |
dc.identifier.doi | 10.3934/mbe.2023669 | pl |
dc.identifier.eissn | 1551-0018 | pl |
dc.identifier.issn | 1547-1063 | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/325397 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | otwarte czasopismo | |
dc.subject.en | positron emission tomography | pl |
dc.subject.en | convolutional neural network | pl |
dc.subject.en | kernel principal component analysis | pl |
dc.subject.en | medical imaging | pl |
dc.subtype | Article | pl |
dc.title | Transformation of PET raw data into images for event classification using convolutional neural networks | pl |
dc.title.journal | Mathematical Biosciences and Engineering | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |