Transformation of PET raw data into images for event classification using convolutional neural networks

2023
journal article
article
2
cris.lastimport.wos2024-04-09T20:57:07Z
dc.abstract.enIn positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczychpl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanejpl
dc.contributor.authorKonieczka, Pawełpl
dc.contributor.authorRaczyński, Lechpl
dc.contributor.authorWiślicki, Wojciechpl
dc.contributor.authorFedoruk, Oleksandrpl
dc.contributor.authorKlimaszewski, Konrad - 242500 pl
dc.contributor.authorKopka, Przemysławpl
dc.contributor.authorKrzemień, Wojciechpl
dc.contributor.authorShopa, Roman Y.pl
dc.contributor.authorBaran, Jakub - 442955 pl
dc.contributor.authorCoussat, Aurélien - 462258 pl
dc.contributor.authorChug, Neha - 417025 pl
dc.contributor.authorCurceanu, Catalinapl
dc.contributor.authorCzerwiński, Eryk - 102850 pl
dc.contributor.authorDadgar, Meysam - 410039 pl
dc.contributor.authorDulski, Kamil - 204579 pl
dc.contributor.authorGajos, Aleksander - 164087 pl
dc.contributor.authorHiesmayr, Beatrix C.pl
dc.contributor.authorKacprzak, Krzysztofpl
dc.contributor.authorKapłon, Łukasz - 115081 pl
dc.contributor.authorKorcyl, Grzegorz - 107362 pl
dc.contributor.authorKozik, Tomasz - 129362 pl
dc.contributor.authorKumar, Deepak - 448421 pl
dc.contributor.authorNiedźwiecki, Szymon - 115136 pl
dc.contributor.authorParzych, Szymon - 369531 pl
dc.contributor.authorPerez del Rio, Elena - 444273 pl
dc.contributor.authorSharma, Sushil - 200161 pl
dc.contributor.authorShivani, Shivani - 381357 pl
dc.contributor.authorSkurzok, Magdalena - 106557 pl
dc.contributor.authorStępień, Ewa - 161583 pl
dc.contributor.authorTayefi Ardebili, Faranak - 424214 pl
dc.contributor.authorMoskal, Paweł - 100401 pl
dc.date.accessioned2024-01-12T15:36:16Z
dc.date.available2024-01-12T15:36:16Z
dc.date.issued2023pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number8pl
dc.description.physical14938-14958pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume20pl
dc.identifier.doi10.3934/mbe.2023669pl
dc.identifier.eissn1551-0018pl
dc.identifier.issn1547-1063pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/325397
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subject.enpositron emission tomographypl
dc.subject.enconvolutional neural networkpl
dc.subject.enkernel principal component analysispl
dc.subject.enmedical imagingpl
dc.subtypeArticlepl
dc.titleTransformation of PET raw data into images for event classification using convolutional neural networkspl
dc.title.journalMathematical Biosciences and Engineeringpl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T20:57:07Z
dc.abstract.enpl
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.affiliationpl
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.contributor.authorpl
Konieczka, Paweł
dc.contributor.authorpl
Raczyński, Lech
dc.contributor.authorpl
Wiślicki, Wojciech
dc.contributor.authorpl
Fedoruk, Oleksandr
dc.contributor.authorpl
Klimaszewski, Konrad - 242500
dc.contributor.authorpl
Kopka, Przemysław
dc.contributor.authorpl
Krzemień, Wojciech
dc.contributor.authorpl
Shopa, Roman Y.
dc.contributor.authorpl
Baran, Jakub - 442955
dc.contributor.authorpl
Coussat, Aurélien - 462258
dc.contributor.authorpl
Chug, Neha - 417025
dc.contributor.authorpl
Curceanu, Catalina
dc.contributor.authorpl
Czerwiński, Eryk - 102850
dc.contributor.authorpl
Dadgar, Meysam - 410039
dc.contributor.authorpl
Dulski, Kamil - 204579
dc.contributor.authorpl
Gajos, Aleksander - 164087
dc.contributor.authorpl
Hiesmayr, Beatrix C.
dc.contributor.authorpl
Kacprzak, Krzysztof
dc.contributor.authorpl
Kapłon, Łukasz - 115081
dc.contributor.authorpl
Korcyl, Grzegorz - 107362
dc.contributor.authorpl
Kozik, Tomasz - 129362
dc.contributor.authorpl
Kumar, Deepak - 448421
dc.contributor.authorpl
Niedźwiecki, Szymon - 115136
dc.contributor.authorpl
Parzych, Szymon - 369531
dc.contributor.authorpl
Perez del Rio, Elena - 444273
dc.contributor.authorpl
Sharma, Sushil - 200161
dc.contributor.authorpl
Shivani, Shivani - 381357
dc.contributor.authorpl
Skurzok, Magdalena - 106557
dc.contributor.authorpl
Stępień, Ewa - 161583
dc.contributor.authorpl
Tayefi Ardebili, Faranak - 424214
dc.contributor.authorpl
Moskal, Paweł - 100401
dc.date.accessioned
2024-01-12T15:36:16Z
dc.date.available
2024-01-12T15:36:16Z
dc.date.issuedpl
2023
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
8
dc.description.physicalpl
14938-14958
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
20
dc.identifier.doipl
10.3934/mbe.2023669
dc.identifier.eissnpl
1551-0018
dc.identifier.issnpl
1547-1063
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/325397
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.enpl
positron emission tomography
dc.subject.enpl
convolutional neural network
dc.subject.enpl
kernel principal component analysis
dc.subject.enpl
medical imaging
dc.subtypepl
Article
dc.titlepl
Transformation of PET raw data into images for event classification using convolutional neural networks
dc.title.journalpl
Mathematical Biosciences and Engineering
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
26
Views per month
Views per city
Krakow
12
Grenoble
2
Seongbuk-gu
2
Melbourne
1
Milpitas
1
Naples
1
Stanford
1
Vienna
1
Downloads
klimaszewski_et-al_transformation_of_pet_raw_data_into_images_2023.pdf
68