Incorporation of spatial- and connectivity-based cortical brain region information in regularized regression: Application to Human Connectome Project data

2022
journal article
article
2
cris.lastimport.wos2024-04-09T23:00:57Z
dc.abstract.enStudying the association of the brain’s structure and function with neurocognitive outcomes requires a comprehensive analysis that combines different sources of information from a number of brain-imaging modalities. Recently developed regularization methods provide a novel approach using information about brain structure to improve the estimation of coefficients in the linear regression models. Our proposed method, which is a special case of the Tikhonov regularization, incorporates structural connectivity derived with Diffusion Weighted Imaging and cortical distance information in the penalty term. Corresponding to previously developed methods that inform the estimation of the regression coefficients, we incorporate additional information via a Laplacian matrix based on the proximity measure on the cortical surface. Our contribution consists of constructing a principled formulation of the penalty term and testing the performance of the proposed approach via extensive simulation studies and a brain-imaging application. The penalty term is constructed as a weighted combination of structural connectivity and proximity between cortical areas. Simulation studies mimic the real brain-imaging settings. We apply our approach to the study of data collected in the Human Connectome Project, where the cortical properties of the left hemisphere are found to be associated with vocabulary comprehensionpl
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczychpl
dc.affiliationPion Prorektora ds. rozwoju : Centrum Badań Ilościowych nad Politykąpl
dc.contributor.authorSteiner, Aleksandrapl
dc.contributor.authorAbbas, Kausarpl
dc.contributor.authorBrzyski, Damian - 115462 pl
dc.contributor.authorPączek, Kewin - 247615 pl
dc.contributor.authorRandolph, Timothy W.pl
dc.contributor.authorGoñi, Joaquínpl
dc.contributor.authorHarezlak, Jaroslawpl
dc.date.accessioned2023-02-20T09:27:03Z
dc.date.available2023-02-20T09:27:03Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume16pl
dc.identifier.articleid16:957282pl
dc.identifier.doi10.3389/fnins.2022.957282pl
dc.identifier.eissn1662-453Xpl
dc.identifier.issn1662-4548pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/308007
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enlinear regressionpl
dc.subject.enregularizationpl
dc.subject.enbrain cortexpl
dc.subject.engeodesic distancepl
dc.subject.eneuclidean distancepl
dc.subject.enstructural connectivitypl
dc.subject.enHCP datapl
dc.subject.envocabulary comprehensionpl
dc.subtypeArticlepl
dc.titleIncorporation of spatial- and connectivity-based cortical brain region information in regularized regression: Application to Human Connectome Project datapl
dc.title.journalFrontiers in Neurosciencepl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T23:00:57Z
dc.abstract.enpl
Studying the association of the brain’s structure and function with neurocognitive outcomes requires a comprehensive analysis that combines different sources of information from a number of brain-imaging modalities. Recently developed regularization methods provide a novel approach using information about brain structure to improve the estimation of coefficients in the linear regression models. Our proposed method, which is a special case of the Tikhonov regularization, incorporates structural connectivity derived with Diffusion Weighted Imaging and cortical distance information in the penalty term. Corresponding to previously developed methods that inform the estimation of the regression coefficients, we incorporate additional information via a Laplacian matrix based on the proximity measure on the cortical surface. Our contribution consists of constructing a principled formulation of the penalty term and testing the performance of the proposed approach via extensive simulation studies and a brain-imaging application. The penalty term is constructed as a weighted combination of structural connectivity and proximity between cortical areas. Simulation studies mimic the real brain-imaging settings. We apply our approach to the study of data collected in the Human Connectome Project, where the cortical properties of the left hemisphere are found to be associated with vocabulary comprehension
dc.affiliationpl
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.affiliationpl
Pion Prorektora ds. rozwoju : Centrum Badań Ilościowych nad Polityką
dc.contributor.authorpl
Steiner, Aleksandra
dc.contributor.authorpl
Abbas, Kausar
dc.contributor.authorpl
Brzyski, Damian - 115462
dc.contributor.authorpl
Pączek, Kewin - 247615
dc.contributor.authorpl
Randolph, Timothy W.
dc.contributor.authorpl
Goñi, Joaquín
dc.contributor.authorpl
Harezlak, Jaroslaw
dc.date.accessioned
2023-02-20T09:27:03Z
dc.date.available
2023-02-20T09:27:03Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
16
dc.identifier.articleidpl
16:957282
dc.identifier.doipl
10.3389/fnins.2022.957282
dc.identifier.eissnpl
1662-453X
dc.identifier.issnpl
1662-4548
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/308007
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
linear regression
dc.subject.enpl
regularization
dc.subject.enpl
brain cortex
dc.subject.enpl
geodesic distance
dc.subject.enpl
euclidean distance
dc.subject.enpl
structural connectivity
dc.subject.enpl
HCP data
dc.subject.enpl
vocabulary comprehension
dc.subtypepl
Article
dc.titlepl
Incorporation of spatial- and connectivity-based cortical brain region information in regularized regression: Application to Human Connectome Project data
dc.title.journalpl
Frontiers in Neuroscience
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.