Transient formation of single layer diamond during friction force microscopy of SiC‐supported epitaxial graphene

2025
journal article
article
dc.abstract.enCarbon allotropes are crucial to advanced interfaces to control friction and wear because of their unique range of mechanical properties: from diamond's hardness to graphite's lubricity. Friction force microscopy (FFM) is reported for diamond tips sliding on SiC(0001)-supported epitaxial graphene. A sharp friction increase is observed at a threshold normal force, linked to an intermittent graphene rehybridization. Comparing the FFM response of a diamond tip to that of a previously studied silicon tip with a comparable radius reveals a similar abrupt friction increase, though at roughly half the threshold force. Atomistic simulations of SiC(0001)-supported graphene sliding against hydroxylated amorphous carbon (a-C) and silicon oxide show low shear stress at low pressures for both systems. The shear stress increases at higher pressures due to bond formation between graphene and the counterbody. For a-C, the transition threshold shifts to higher pressures, consistent with FFM results. In simulations with high normal pressures, epitaxial graphene undergoes a structural transformation into single-layer diamond, contributing to the abrupt increase in friction. The graphene structure recovers after lifting the a-C counterbody, demonstrating structural robustness under tribological stress. These findings provide insights into the stability of low-friction interfaces between epitaxial graphene and key materials for current micro-electro-mechanical systems (MEMS)
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorZarshenas, Mohammad
dc.contributor.authorKuwahara, Takuya
dc.contributor.authorSzczefanowicz, Bartosz - 511566
dc.contributor.authorKlemenz, Andreas
dc.contributor.authorMayrhofer, Leonhard
dc.contributor.authorPastewka, Lars
dc.contributor.authorMoras, Gianpietro
dc.contributor.authorBennewitz, Roland
dc.contributor.authorMoseler, Michael
dc.date.accessioned2025-10-21T14:04:25Z
dc.date.available2025-10-21T14:04:25Z
dc.date.createdat2025-10-13T09:22:26Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.additionalOnline First 2025-09-12
dc.description.versionostateczna wersja wydawcy
dc.identifier.articleide00511
dc.identifier.doi10.1002/admi.202500511
dc.identifier.eissn2196-7350
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/563366
dc.languageeng
dc.language.containereng
dc.rightsDodaję tylko opis bibliograficzny
dc.rights.licenceCC-BY
dc.share.typeotwarte czasopismo
dc.subtypeArticle
dc.titleTransient formation of single layer diamond during friction force microscopy of SiC‐supported epitaxial graphene
dc.title.journalAdvanced Materials Interfaces
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
Carbon allotropes are crucial to advanced interfaces to control friction and wear because of their unique range of mechanical properties: from diamond's hardness to graphite's lubricity. Friction force microscopy (FFM) is reported for diamond tips sliding on SiC(0001)-supported epitaxial graphene. A sharp friction increase is observed at a threshold normal force, linked to an intermittent graphene rehybridization. Comparing the FFM response of a diamond tip to that of a previously studied silicon tip with a comparable radius reveals a similar abrupt friction increase, though at roughly half the threshold force. Atomistic simulations of SiC(0001)-supported graphene sliding against hydroxylated amorphous carbon (a-C) and silicon oxide show low shear stress at low pressures for both systems. The shear stress increases at higher pressures due to bond formation between graphene and the counterbody. For a-C, the transition threshold shifts to higher pressures, consistent with FFM results. In simulations with high normal pressures, epitaxial graphene undergoes a structural transformation into single-layer diamond, contributing to the abrupt increase in friction. The graphene structure recovers after lifting the a-C counterbody, demonstrating structural robustness under tribological stress. These findings provide insights into the stability of low-friction interfaces between epitaxial graphene and key materials for current micro-electro-mechanical systems (MEMS)
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.author
Zarshenas, Mohammad
dc.contributor.author
Kuwahara, Takuya
dc.contributor.author
Szczefanowicz, Bartosz - 511566
dc.contributor.author
Klemenz, Andreas
dc.contributor.author
Mayrhofer, Leonhard
dc.contributor.author
Pastewka, Lars
dc.contributor.author
Moras, Gianpietro
dc.contributor.author
Bennewitz, Roland
dc.contributor.author
Moseler, Michael
dc.date.accessioned
2025-10-21T14:04:25Z
dc.date.available
2025-10-21T14:04:25Z
dc.date.createdaten
2025-10-13T09:22:26Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.additional
Online First 2025-09-12
dc.description.version
ostateczna wersja wydawcy
dc.identifier.articleid
e00511
dc.identifier.doi
10.1002/admi.202500511
dc.identifier.eissn
2196-7350
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/563366
dc.language
eng
dc.language.container
eng
dc.rights
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY
dc.share.type
otwarte czasopismo
dc.subtype
Article
dc.title
Transient formation of single layer diamond during friction force microscopy of SiC‐supported epitaxial graphene
dc.title.journal
Advanced Materials Interfaces
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
8
Views per month

No access

No Thumbnail Available