Approaching stationarity : competition between long jumps and longwaiting times

2010
journal article
article
6
dc.abstract.enWithin the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorDybiec, Bartłomiej - 102110 pl
dc.date.accessioned2018-04-13T10:19:44Z
dc.date.available2018-04-13T10:19:44Z
dc.date.issued2010pl
dc.description.number3pl
dc.description.volume2010pl
dc.identifier.articleidP03019pl
dc.identifier.doi10.1088/1742-5468/2010/03/P03019pl
dc.identifier.eissn1742-5468pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/53389
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.uri*
dc.subject.enstochastic particle dynamics (theory)pl
dc.subject.enstochastic processes (theory)pl
dc.subject.enstochastic processes (experiment)pl
dc.subject.endiffusionpl
dc.subtypeArticlepl
dc.titleApproaching stationarity : competition between long jumps and longwaiting timespl
dc.title.journalJournal of Statistical Mechanicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Within the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Dybiec, Bartłomiej - 102110
dc.date.accessioned
2018-04-13T10:19:44Z
dc.date.available
2018-04-13T10:19:44Z
dc.date.issuedpl
2010
dc.description.numberpl
3
dc.description.volumepl
2010
dc.identifier.articleidpl
P03019
dc.identifier.doipl
10.1088/1742-5468/2010/03/P03019
dc.identifier.eissnpl
1742-5468
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/53389
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
dc.subject.enpl
stochastic particle dynamics (theory)
dc.subject.enpl
stochastic processes (theory)
dc.subject.enpl
stochastic processes (experiment)
dc.subject.enpl
diffusion
dc.subtypepl
Article
dc.titlepl
Approaching stationarity : competition between long jumps and longwaiting times
dc.title.journalpl
Journal of Statistical Mechanics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
1
Views per month

No access

No Thumbnail Available