Stable solar water splitting enabled in anodic nanorod based electrodes by hydrothermal engineering

2025
journal article
article
dc.abstract.enThe stability of $WO_{3}$ photoelectrodes in neutral media remains a significant challenge, particularly for those fabricated by anodic W oxidation. We report a simple, one-step hydrothermal treatment that transforms porous anodic $WO_{3}$ into nanorods with a dispersed $FeWO_{4}$ phase. This morphological evolution combines the advantages of high-aspect-ratio structures for improved light absorption with reduced charge recombination losses. The treatment also promotes preferential $WO_{3}$ growth along the monoclinic (002) plane─known to favor water splitting. The modified electrodes exhibited considerable photoluminescence quenching, significantly enhanced charge separation efficiency, and higher photon-to-current conversion, resulting in a photocurrent density that was ∼1.8 times higher at 1.0 V vs RHE. Additionally, oxygen vacancy formation during operation likely contributes to charge redistribution, mitigating surface degradation in sodium sulfate and enabling rapid stabilization of the photocurrent over several hours. Electrochemical impedance spectroscopy reveals evidence of p–n heterojunction due to integration of the tungstate phase with $WO_{3}$, extended charge carrier lifetimes, and enhanced charge transfer. This scalable surface engineering approach offers a promising route to enhance the performance and durability of anodic $WO_{3}$ for practical solar-driven water oxidation.
dc.affiliationWydział Chemii : Zakład Chemii Fizycznej i Elektrochemii
dc.affiliationSzkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.authorChatterjee, Piyali - 495190
dc.contributor.authorPiecha, Daniel - 405022
dc.contributor.authorSzczerba, Mateusz - 402298
dc.contributor.authorChernyayeva, Olga
dc.contributor.authorGondek, Łukasz
dc.contributor.authorUchacz, Tomasz - 162425
dc.contributor.authorSulka, Grzegorz - 132161
dc.date.accession2025-10-15
dc.date.accessioned2025-10-15T13:19:51Z
dc.date.available2025-10-15T13:19:51Z
dc.date.createdat2025-10-09T16:28:42Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number39
dc.description.physical18990-19000
dc.description.versionostateczna wersja wydawcy
dc.description.volume8
dc.identifier.doi10.1021/acsanm.5c03456
dc.identifier.eissn2574-0970
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/562854
dc.identifier.weblinkhttps://pubs.acs.org/doi/10.1021/acsanm.5c03456
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subject.enphotoelectrochemical water splitting
dc.subject.entungsten oxide nanorods
dc.subject.enanodic oxidation
dc.subject.enhydrothermal engineering
dc.subject.ensolar energy conversion
dc.subtypeArticle
dc.titleStable solar water splitting enabled in anodic $W/WO_3$ nanorod based electrodes by hydrothermal engineering
dc.title.journalACS Applied Nano Materials
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
The stability of $WO_{3}$ photoelectrodes in neutral media remains a significant challenge, particularly for those fabricated by anodic W oxidation. We report a simple, one-step hydrothermal treatment that transforms porous anodic $WO_{3}$ into nanorods with a dispersed $FeWO_{4}$ phase. This morphological evolution combines the advantages of high-aspect-ratio structures for improved light absorption with reduced charge recombination losses. The treatment also promotes preferential $WO_{3}$ growth along the monoclinic (002) plane─known to favor water splitting. The modified electrodes exhibited considerable photoluminescence quenching, significantly enhanced charge separation efficiency, and higher photon-to-current conversion, resulting in a photocurrent density that was ∼1.8 times higher at 1.0 V vs RHE. Additionally, oxygen vacancy formation during operation likely contributes to charge redistribution, mitigating surface degradation in sodium sulfate and enabling rapid stabilization of the photocurrent over several hours. Electrochemical impedance spectroscopy reveals evidence of p–n heterojunction due to integration of the tungstate phase with $WO_{3}$, extended charge carrier lifetimes, and enhanced charge transfer. This scalable surface engineering approach offers a promising route to enhance the performance and durability of anodic $WO_{3}$ for practical solar-driven water oxidation.
dc.affiliation
Wydział Chemii : Zakład Chemii Fizycznej i Elektrochemii
dc.affiliation
Szkoła Doktorska Nauk Ścisłych i Przyrodniczych
dc.contributor.author
Chatterjee, Piyali - 495190
dc.contributor.author
Piecha, Daniel - 405022
dc.contributor.author
Szczerba, Mateusz - 402298
dc.contributor.author
Chernyayeva, Olga
dc.contributor.author
Gondek, Łukasz
dc.contributor.author
Uchacz, Tomasz - 162425
dc.contributor.author
Sulka, Grzegorz - 132161
dc.date.accession
2025-10-15
dc.date.accessioned
2025-10-15T13:19:51Z
dc.date.available
2025-10-15T13:19:51Z
dc.date.createdaten
2025-10-09T16:28:42Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
39
dc.description.physical
18990-19000
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
8
dc.identifier.doi
10.1021/acsanm.5c03456
dc.identifier.eissn
2574-0970
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/562854
dc.identifier.weblink
https://pubs.acs.org/doi/10.1021/acsanm.5c03456
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.en
photoelectrochemical water splitting
dc.subject.en
tungsten oxide nanorods
dc.subject.en
anodic oxidation
dc.subject.en
hydrothermal engineering
dc.subject.en
solar energy conversion
dc.subtype
Article
dc.title
Stable solar water splitting enabled in anodic $W/WO_3$ nanorod based electrodes by hydrothermal engineering
dc.title.journal
ACS Applied Nano Materials
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
11
Views per month
Views per city
Krakow
2
Máquina Atacama
1
Wieliczka
1
Downloads
chatterjee_et-al_stable_solar_water_splitting_enabled_in_anodic_2025.pdf
2