Simple view
Full metadata view
Authors
Statistics
On the local Fourier uniformity problem for small sets
We consider vanishing properties of exponential sums of the Liouville function
where
| dc.abstract.en | We consider vanishing properties of exponential sums of the Liouville function $\lambda$ of the form $\displaystyle \lim_{\textit{H} \to \infty }\displaystyle \limsup_{\textit{X} \to \infty }\frac{1}{log\textit{X}}\sum_{\textit{m}\leq \textit{X}}\frac{1}{\textit{m}}\displaystyle \sup_{\alpha \in \textit{C}} \left | \frac{1}{\textit{H}}\sum_{\textit{h}\leq \textit{H}}\lambda \left ( \textit{m}+\textit{h} \right )\textit{e}^{2\pi \textit{ih}\alpha }\right |=0,$ where $\textit{C}\subset \mathbb{T}$. The case $\textit{C}= \mathbb{T}$ corresponds to the local $1-$Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $\textit{C}\subset \mathbb{T}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $\textit{C}$ with non-empty interior is equivalent to the $\textit{C}=\mathbb{T}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $\textit{e}^{2\pi \textit{ih}\alpha }$ is replaced by a polynomial phase $\textit{e}^{2\pi \textit{ih}^{\textit{t}}\alpha }$ for $\textit{t}\geq 2$ then the statement remains true for any set $\textit{C}$ of upper box-counting dimension $< 1/\textit{t}$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $\textit{t-}$step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1-$Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure. | |
| dc.affiliation | Wydział Matematyki i Informatyki : Centrum Zaawansowanych Badań Matematycznych | |
| dc.contributor.author | Kanigowski, Adam - 478448 | |
| dc.contributor.author | Lemańczyk, Mariusz | |
| dc.contributor.author | Richter, Florian K | |
| dc.contributor.author | Teräväinen, Joni | |
| dc.date.accession | 2025-11-14 | |
| dc.date.accessioned | 2025-11-14T11:23:09Z | |
| dc.date.available | 2025-11-14T11:23:09Z | |
| dc.date.createdat | 2025-11-13T12:04:04Z | en |
| dc.date.issued | 2024 | |
| dc.date.openaccess | 0 | |
| dc.description.accesstime | w momencie opublikowania | |
| dc.description.number | 15 | |
| dc.description.physical | 11488–11512 | |
| dc.description.version | ostateczna wersja wydawcy | |
| dc.description.volume | 2024 | |
| dc.identifier.doi | 10.1093/imrn/rnae134 | |
| dc.identifier.eissn | 1687-0247 | |
| dc.identifier.issn | 1073-7928 | |
| dc.identifier.project | DRC AI | |
| dc.identifier.uri | https://ruj.uj.edu.pl/handle/item/565290 | |
| dc.language | eng | |
| dc.language.container | eng | |
| dc.rights | Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa | |
| dc.rights.licence | CC-BY-NC-ND | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl | |
| dc.share.type | inne | |
| dc.subtype | Article | |
| dc.title | On the local Fourier uniformity problem for small sets | |
| dc.title.journal | International Mathematics Research Notices | |
| dc.type | JournalArticle | |
| dspace.entity.type | Publication | en |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
24
Views per month
Views per city
Downloads
Open Access