On the local Fourier uniformity problem for small sets

2024
journal article
article
dc.abstract.enWe consider vanishing properties of exponential sums of the Liouville function $\lambda$ of the form $\displaystyle \lim_{\textit{H} \to \infty }\displaystyle \limsup_{\textit{X} \to \infty }\frac{1}{log\textit{X}}\sum_{\textit{m}\leq \textit{X}}\frac{1}{\textit{m}}\displaystyle \sup_{\alpha \in \textit{C}} \left | \frac{1}{\textit{H}}\sum_{\textit{h}\leq \textit{H}}\lambda \left ( \textit{m}+\textit{h} \right )\textit{e}^{2\pi \textit{ih}\alpha }\right |=0,$ where $\textit{C}\subset \mathbb{T}$. The case $\textit{C}= \mathbb{T}$ corresponds to the local $1-$Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $\textit{C}\subset \mathbb{T}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $\textit{C}$ with non-empty interior is equivalent to the $\textit{C}=\mathbb{T}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $\textit{e}^{2\pi \textit{ih}\alpha }$ is replaced by a polynomial phase $\textit{e}^{2\pi \textit{ih}^{\textit{t}}\alpha }$ for $\textit{t}\geq 2$ then the statement remains true for any set $\textit{C}$ of upper box-counting dimension $< 1/\textit{t}$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $\textit{t-}$step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1-$Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.
dc.affiliationWydział Matematyki i Informatyki : Centrum Zaawansowanych Badań Matematycznych
dc.contributor.authorKanigowski, Adam - 478448
dc.contributor.authorLemańczyk, Mariusz
dc.contributor.authorRichter, Florian K
dc.contributor.authorTeräväinen, Joni
dc.date.accession2025-11-14
dc.date.accessioned2025-11-14T11:23:09Z
dc.date.available2025-11-14T11:23:09Z
dc.date.createdat2025-11-13T12:04:04Zen
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number15
dc.description.physical11488–11512
dc.description.versionostateczna wersja wydawcy
dc.description.volume2024
dc.identifier.doi10.1093/imrn/rnae134
dc.identifier.eissn1687-0247
dc.identifier.issn1073-7928
dc.identifier.projectDRC AI
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/565290
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.typeinne
dc.subtypeArticle
dc.titleOn the local Fourier uniformity problem for small sets
dc.title.journalInternational Mathematics Research Notices
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
We consider vanishing properties of exponential sums of the Liouville function $\lambda$ of the form $\displaystyle \lim_{\textit{H} \to \infty }\displaystyle \limsup_{\textit{X} \to \infty }\frac{1}{log\textit{X}}\sum_{\textit{m}\leq \textit{X}}\frac{1}{\textit{m}}\displaystyle \sup_{\alpha \in \textit{C}} \left | \frac{1}{\textit{H}}\sum_{\textit{h}\leq \textit{H}}\lambda \left ( \textit{m}+\textit{h} \right )\textit{e}^{2\pi \textit{ih}\alpha }\right |=0,$ where $\textit{C}\subset \mathbb{T}$. The case $\textit{C}= \mathbb{T}$ corresponds to the local $1-$Fourier uniformity conjecture of Tao, a central open problem in the study of multiplicative functions with far-reaching number-theoretic applications. We show that the above holds for any closed set $\textit{C}\subset \mathbb{T}$ of zero Lebesgue measure. Moreover, we prove that extending this to any set $\textit{C}$ with non-empty interior is equivalent to the $\textit{C}=\mathbb{T}$ case, which shows that our results are essentially optimal without resolving the full conjecture. We also consider higher-order variants. We prove that if the linear phase $\textit{e}^{2\pi \textit{ih}\alpha }$ is replaced by a polynomial phase $\textit{e}^{2\pi \textit{ih}^{\textit{t}}\alpha }$ for $\textit{t}\geq 2$ then the statement remains true for any set $\textit{C}$ of upper box-counting dimension $< 1/\textit{t}$. The statement also remains true if the supremum over linear phases is replaced with a supremum over all nilsequences coming form a compact countable ergodic subsets of any $\textit{t-}$step nilpotent Lie group. Furthermore, we discuss the unweighted version of the local $1-$Fourier uniformity problem, showing its validity for a class of “rigid” sets (of full Hausdorff dimension) and proving a density result for all closed subsets of zero Lebesgue measure.
dc.affiliation
Wydział Matematyki i Informatyki : Centrum Zaawansowanych Badań Matematycznych
dc.contributor.author
Kanigowski, Adam - 478448
dc.contributor.author
Lemańczyk, Mariusz
dc.contributor.author
Richter, Florian K
dc.contributor.author
Teräväinen, Joni
dc.date.accession
2025-11-14
dc.date.accessioned
2025-11-14T11:23:09Z
dc.date.available
2025-11-14T11:23:09Z
dc.date.createdaten
2025-11-13T12:04:04Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
15
dc.description.physical
11488–11512
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
2024
dc.identifier.doi
10.1093/imrn/rnae134
dc.identifier.eissn
1687-0247
dc.identifier.issn
1073-7928
dc.identifier.project
DRC AI
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/565290
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
inne
dc.subtype
Article
dc.title
On the local Fourier uniformity problem for small sets
dc.title.journal
International Mathematics Research Notices
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
24
Views per month
Views per city
Krakow
1
Downloads
kanigowski_et-al_on_the_local_fourier_uniformity_2024.pdf
5