Furstenberg topology and Collatz problem

2025
journal article
article
dc.abstract.enThe aims of this paper are two-fold. First, we present the result of the decomposition on the iterations of a Collatz transform into arithmetic sequences. With this, we prove that in Furstenberg topology, the set of (odd) integers with an infinite stopping time is closed and nowhere dense. Then, we move our considerations to some monoids 𝕃 in ℕ, where we define a suitably modified Collatz transform, and we present some results of numerical investigations on the behaviour of these modified transforms.
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorTutaj, Edward - 132454
dc.contributor.authorTutaj-Gasińska, Halszka - 132455
dc.date.accession2025-05-09
dc.date.accessioned2025-05-09T09:48:47Z
dc.date.available2025-05-09T09:48:47Z
dc.date.createdat2025-04-17T09:22:52Zen
dc.date.issued2025
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number4
dc.description.versionostateczna wersja wydawcy
dc.description.volume14
dc.identifier.articleid297
dc.identifier.doi10.3390/axioms14040297
dc.identifier.issn2075-1680
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/552183
dc.identifier.weblinkhttps://www.mdpi.com/2075-1680/14/4/297
dc.languageeng
dc.language.containereng
dc.rightsDodaję tylko opis bibliograficzny
dc.rights.licenceCC-BY
dc.share.typeotwarte czasopismo
dc.subject.enCollatz conjecture
dc.subject.enarithmetic sequence
dc.subject.enFurstenberg topology
dc.subject.enstopping time
dc.subtypeArticle
dc.titleFurstenberg topology and Collatz problem
dc.title.journalAxioms
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
The aims of this paper are two-fold. First, we present the result of the decomposition on the iterations of a Collatz transform into arithmetic sequences. With this, we prove that in Furstenberg topology, the set of (odd) integers with an infinite stopping time is closed and nowhere dense. Then, we move our considerations to some monoids 𝕃 in ℕ, where we define a suitably modified Collatz transform, and we present some results of numerical investigations on the behaviour of these modified transforms.
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.author
Tutaj, Edward - 132454
dc.contributor.author
Tutaj-Gasińska, Halszka - 132455
dc.date.accession
2025-05-09
dc.date.accessioned
2025-05-09T09:48:47Z
dc.date.available
2025-05-09T09:48:47Z
dc.date.createdaten
2025-04-17T09:22:52Z
dc.date.issued
2025
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.number
4
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
14
dc.identifier.articleid
297
dc.identifier.doi
10.3390/axioms14040297
dc.identifier.issn
2075-1680
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/552183
dc.identifier.weblink
https://www.mdpi.com/2075-1680/14/4/297
dc.language
eng
dc.language.container
eng
dc.rights
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY
dc.share.type
otwarte czasopismo
dc.subject.en
Collatz conjecture
dc.subject.en
arithmetic sequence
dc.subject.en
Furstenberg topology
dc.subject.en
stopping time
dc.subtype
Article
dc.title
Furstenberg topology and Collatz problem
dc.title.journal
Axioms
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
6
Views per month
Views per city
Krakow
1
Singapore
1

No access

No Thumbnail Available