Jagiellonian University Repository

The natural operators similar to the twisted Courant bracket one

pcg.skipToMenu

The natural operators similar to the twisted Courant bracket one

Show full item record

dc.contributor.author Mikulski, Włodzimierz [SAP11010602] pl
dc.date.accessioned 2019-11-22T12:48:22Z
dc.date.available 2019-11-22T12:48:22Z
dc.date.issued 2019 pl
dc.identifier.issn 1660-5446 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/87734
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title The natural operators similar to the twisted Courant bracket one pl
dc.type JournalArticle pl
dc.description.physical 1-15 pl
dc.abstract.en Given natural numbers m≥3 and p≥3, all Mfm-natural operators AH sending p-forms H∈Ωp(M) on m-manifolds M into bilinear operators AH:(X(M)⊕Ω1(M))×(X(M)⊕Ω1(M))→X(M)⊕Ω1(M) transforming pairs of couples of vector fields and 1-forms on M into couples of vector fields and 1-forms on M are founded. If m≥3 and p≥3, then that any (similar as above) Mfm-natural operator A which is defined only for closed p-forms H can be extended uniquely to the one A which is defined for all p-forms H is observed. If p=3 and m≥3, all Mfm-natural operators A (as above) such that AH satisfies the Leibniz rule for all closed 3-forms H on m-manifolds M are extracted. The twisted Courant bracket [−,−]H for all closed 3-forms H on m-manifolds M gives the most important example of such Mfm-natural operator A. pl
dc.subject.en natural operator pl
dc.subject.en twisted Courant bracket pl
dc.subject.en Leibniz rule pl
dc.description.volume 16 pl
dc.identifier.doi 10.1007/s00009-019-1367-1 pl
dc.identifier.eissn 1660-5454 pl
dc.title.journal Mediterranean Journal of Mathematics pl
dc.language.container eng pl
dc.affiliation Wydział Matematyki i Informatyki : Instytut Matematyki pl
dc.subtype Article pl
dc.identifier.articleid 101 pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2019 A]: 40


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa