Jagiellonian University Repository

A class of generalized evolutionary problems driven by variational inequalities and fractional operators

pcg.skipToMenu

A class of generalized evolutionary problems driven by variational inequalities and fractional operators

Show full item record

dc.contributor.author Migórski, Stanisław [SAP11012338] pl
dc.contributor.author Zeng, Shengda [USOS238530] pl
dc.date.accessioned 2019-11-21T09:23:49Z
dc.date.available 2019-11-21T09:23:49Z
dc.date.issued 2019 pl
dc.identifier.issn 1877-0533 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/87535
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title A class of generalized evolutionary problems driven by variational inequalities and fractional operators pl
dc.type JournalArticle pl
dc.description.physical 949-970 pl
dc.abstract.en This paper is devoted to a generalized evolution system called fractional partial differential variational inequality which consists of a mixed quasi-variational inequality combined with a fractional partial differential equation in a Banach space. Invoking the pseudomonotonicity of multivalued operators and a generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, first, we prove that the solution set of the mixed quasi-variational inequality involved in system is nonempty, closed and convex. Next, the measurability and upper semicontinuity for the mixed quasi-variational inequality with respect to the time variable and state variable are established. Finally, the existence of mild solutions for the system is delivered. The approach is based on the theory of operator semigroups, the Bohnenblust-Karlin fixed point principle for multivalued mappings, and theory of fractional operators. pl
dc.subject.en fractional partial differential variational inequalities pl
dc.subject.en Caputo derivative pl
dc.subject.en Knaster-Kuratowski-Mazurkiewicz theorem pl
dc.subject.en Bohnenblust-Karlin fixed point principle pl
dc.subject.en $\phi$-pseudomonotonicity pl
dc.subject.en mixed quasi-variational inequalities pl
dc.description.volume 27 pl
dc.description.number 4 pl
dc.identifier.doi 10.1007/s11228-018-0502-7 pl
dc.identifier.eissn 1877-0541 pl
dc.title.journal Set-Valued and Variational Analysis pl
dc.language.container eng pl
dc.affiliation Wydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowania pl
dc.subtype Article pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project 823731 - CONMECH pl
dc.identifier.project UMO-2012/06/A/ST1/00262 pl
dc.identifier.project 2017/25/N/ST1/00611 pl
dc.identifier.project 3792/GGPJ/H2020/2017/0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2019 A]: 70


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa