Dynamical properties of a perceptron learning process : structural stability under numerics and shadowing
pl
dc.type
JournalArticle
pl
dc.abstract.en
In this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and robust. Implementation aspects are discussed as well. The analysis is based on the theorem concerning global topological conjugacy of cascades generated by a gradient flow on a compact manifold without a boundary.
pl
dc.subject.en
dynamical system
pl
dc.subject.en
topological conjugacy
pl
dc.subject.en
shadowing
pl
dc.subject.en
inverse shadowing
pl
dc.subject.en
robustness
pl
dc.subject.en
perceptron learning process
pl
dc.subject.en
gradient differential equation
pl
dc.subject.en
Runge-Kutta methods
pl
dc.identifier.doi
10.1007/s00332-011-9094-1
pl
dc.identifier.eissn
1432-1467
pl
dc.title.journal
Journal of Nonlinear Science
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Matematyki
pl
dc.subtype
Article
pl
dc.identifier.articleid
21:579
dc.rights.original
CC-BY-NC; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0