Resolution invariant wavelet features of melanoma studied by SVM classifiers
pl
dc.type
JournalArticle
pl
dc.abstract.en
This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks.
pl
dc.description.volume
14
pl
dc.description.number
2
pl
dc.identifier.doi
10.1371/journal.pone.0211318
pl
dc.identifier.eissn
1932-6203
pl
dc.title.journal
PLoS ONE
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych
pl
dc.subtype
Article
pl
dc.identifier.articleid
e0211318
pl
dc.rights.original
CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0