Jagiellonian University Repository

Resolution invariant wavelet features of melanoma studied by SVM classifiers

pcg.skipToMenu

Resolution invariant wavelet features of melanoma studied by SVM classifiers

Show full item record

dc.contributor.author Surówka, Grzegorz [SAP11016006] pl
dc.contributor.author Ogorzałek, Maciej [SAP11018332] pl
dc.date.accessioned 2019-03-06T14:47:19Z
dc.date.available 2019-03-06T14:47:19Z
dc.date.issued 2019 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/69907
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title Resolution invariant wavelet features of melanoma studied by SVM classifiers pl
dc.type JournalArticle pl
dc.abstract.en This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks. pl
dc.description.volume 14 pl
dc.description.number 2 pl
dc.identifier.doi 10.1371/journal.pone.0211318 pl
dc.identifier.eissn 1932-6203 pl
dc.title.journal PLoS ONE pl
dc.language.container eng pl
dc.affiliation Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych pl
dc.subtype Article pl
dc.identifier.articleid e0211318 pl
dc.rights.original CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2019 A]: 100


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa