Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians
pl
dc.type
JournalArticle
pl
dc.abstract.en
We introduce a phenomenological theory for many-body control of critical phenomena by engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are controlling information flow within and/or between clusters that are created near a quantum critical point. To this end, we construct inhomogeneous quantum phase transitions via designing spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered quantum systems can create new effective correlation length scales and effective dynamical critical exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing transitions for strongly disordered quantum Ising chains leading to exponential suppression of topological defects beyond standard Kibble–Zurek predictions. Using exact numerical techniques for 1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demonstrate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions of causal zones during SDRG flow. We derive a scaling relation for minimal causal gaps showing they narrow more slowly than any polynomial with increasing size of system, in contrast to stretched exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling behavior for random cluster-Ising Hamiltonians with higher order interactions.
pl
dc.description.volume
20
pl
dc.description.number
10
pl
dc.identifier.doi
10.1088/1367-2630/aae3ed
pl
dc.identifier.eissn
1367-2630
pl
dc.title.journal
New Journal of Physics
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
pl
dc.subtype
Article
pl
dc.identifier.articleid
105002
pl
dc.rights.original
CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0