Jagiellonian University Repository

Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians

pcg.skipToMenu

Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians

Show full item record

dc.contributor.author Mohseni, Masoud pl
dc.contributor.author Strumpfer, Johan pl
dc.contributor.author Rams, Marek [SAP13902682] pl
dc.date.accessioned 2018-10-24T11:41:42Z
dc.date.available 2018-10-24T11:41:42Z
dc.date.issued 2018 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/58611
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 3.0 *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/legalcode *
dc.title Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians pl
dc.type JournalArticle pl
dc.abstract.en We introduce a phenomenological theory for many-body control of critical phenomena by engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are controlling information flow within and/or between clusters that are created near a quantum critical point. To this end, we construct inhomogeneous quantum phase transitions via designing spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered quantum systems can create new effective correlation length scales and effective dynamical critical exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing transitions for strongly disordered quantum Ising chains leading to exponential suppression of topological defects beyond standard Kibble–Zurek predictions. Using exact numerical techniques for 1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demonstrate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions of causal zones during SDRG flow. We derive a scaling relation for minimal causal gaps showing they narrow more slowly than any polynomial with increasing size of system, in contrast to stretched exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling behavior for random cluster-Ising Hamiltonians with higher order interactions. pl
dc.description.volume 20 pl
dc.description.number 10 pl
dc.identifier.doi 10.1088/1367-2630/aae3ed pl
dc.identifier.eissn 1367-2630 pl
dc.title.journal New Journal of Physics pl
dc.language.container eng pl
dc.affiliation Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego pl
dc.subtype Article pl
dc.identifier.articleid 105002 pl
dc.rights.original CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2018 A]: 40


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 3.0 Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 3.0