Repozytorium Uniwersytetu Jagiellońskiego

Prawda i konsensus : logiczne podstawy konsensualnego kryterium prawdy

Prawda i konsensus : logiczne podstawy konsensualnego ...

Metadane (Dublin Core)

dc.contributor.author Kijania-Placek, Katarzyna [SAP11017107] pl
dc.date.accessioned 2018-09-12T08:51:24Z
dc.date.available 2018-09-12T08:51:24Z
dc.date.issued 2000 pl
dc.identifier.isbn 83-233-1320-2 pl
dc.identifier.isbn 978-83-233-1320-5 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/56899
dc.language pol pl
dc.rights Dodaję tylko opis bibliograficzny *
dc.rights.uri *
dc.title Prawda i konsensus : logiczne podstawy konsensualnego kryterium prawdy pl
dc.title.alternative Truth and consensus : a logical analysis of the consensus criterion of truth pl
dc.type Book pl
dc.pubinfo Kraków : Wydawnictwo Uniwersytetu Jagiellońskiego pl
dc.description.physical 150, [1] pl
dc.abstract.en The objective of this book is to provide a logical analysis of the consensus criterion of truth, i.e. the criterion stating that a sentence is true if and only if everybody in a population accepts it. Common agreement is treated as a special case of majority agreement, the later being analyzed in the framework of first order predicate logic extended by the addition of the majority quantifier. The logical analysis of majority agreement is proceeded by a historical introduction to the subject. The substantial part of the book consists of chapters 4.-7. In chapter 4. majority is analysed with the help of a unary quantifier and in chapter 5. - a binary quantifier. Both are interpreted in the framework of generalized quantifiers. It is argued that it is the binary quantifier that should be treated as more adequately formalizing the natural language majority quanti- fier. In chapters 4. and 5. it is assumed that we are taking into consideration only models of finite domains. This restriction is withdrawn in chapters 6. and 7. where it is shown how with the help of the notion of semipartial models we can account for the fact that the populations considered are always finite without the limitations of the theory of finite models. Additional assumptions, concerning the number of people in considered populations, enable a definition of a (pseudo)-majority quantifier in the language L ω1ω. This leads to a formulation of a theory of majority based on L ω1ω, which is complete with respect to semipartial models of the theory. Several definitions of the consensus criterion of truth are proposed. the final one is formulated in terms of supervaluational satisfaction in semipartial models. It is argued that the criterion defined according to the final proposal fulfills intuitive constraints concerning assertions, majority, and truth that any formal account of majority agreement is supposed to fulfill. The last chapter concerns questions of bivalence, monotonicity, the scope of application of the criterion, and the matter of treating consensus as a special case of majority agreement. The majority criterion turns out to be nonmonotonic and not bivalent. It is argued that the scope of application of the criterion depends upon our philosophical theories concerning truth, with one exception: the logic of majority agreement demands that this criterion should not be applied to the very sentences stating the agreement. pl
dc.subject.pl prawda pl
dc.subject.pl konsensus pl
dc.subject.pl kryterium prawdy pl
dc.subject.pl zgoda większości pl
dc.subject.pl uznawanie zdań pl
dc.subject.pl spełnianie superwaluacyjne pl
dc.subject.pl kwantyfikatory uogólnione pl
dc.subject.pl logika częściowa pl
dc.description.series Dialogikon, ISSN 1505-4594; 9 pl
dc.description.points 20 pl
dc.description.publication 14 pl
dc.affiliation Wydział Filozoficzny : Instytut Filozofii pl
dc.subtype Monography pl
dc.rights.original bez licencji pl
dc.identifier.project ROD UJ / O pl


Pliki tej pozycji

Plik Rozmiar Format Przeglądanie

Nie ma plików powiązanych z tą pozycją.

Pozycja umieszczona jest w następujących kolekcjach