Jagiellonian University Repository

Midconvexity for finite sets

pcg.skipToMenu

Midconvexity for finite sets

Show full item record

dc.contributor.author Misztal, Krzysztof [SAP14000847] pl
dc.contributor.author Tabor, Jacek [SAP11017416] pl
dc.contributor.author Tabor, Józef pl
dc.date.accessioned 2014-07-16T05:09:34Z
dc.date.available 2014-07-16T05:09:34Z
dc.date.issued 2013 pl
dc.identifier.issn 1025-5834 pl
dc.identifier.uri http://ruj.uj.edu.pl/xmlui/handle/item/55
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 3.0 Polska *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/pl/legalcode *
dc.title Midconvexity for finite sets pl
dc.type JournalArticle pl
dc.abstract.en Let X be a finite subset of a real vector space. We study Jensen-type convexity on subsets of X. In particular for subsets of X, we introduce the definition of X-midconvex sets. We show that such a notion corresponds well to the classical notion of a convex set. Moreover, we prove that a function X-midconvex set is a midconvex hull of all its extremal points. Other analogues of some classical results are also given. At the end we present an algorithmic approach to finding the midconvex hull of a given set. pl
dc.subject.en midconvex set pl
dc.subject.en midconvex function pl
dc.subject.en midconvex hull pl
dc.description.volume 2013 pl
dc.description.publication 1 pl
dc.identifier.doi 10.1186/1029-242X-2013-42 pl
dc.identifier.eissn 1029-242X pl
dc.title.journal Journal of Inequalities and Applications pl
dc.language.container eng pl
dc.affiliation Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej pl
dc.subtype Article pl
dc.identifier.articleid 42 pl
dc.rights.original CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0; pl
.pointsMNiSW [2013 A]: 30


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 3.0 Polska Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 3.0 Polska