Let X be a finite subset of a real vector space. We study Jensen-type convexity on subsets of X. In particular for subsets of X, we introduce the definition of X-midconvex sets. We show that such a notion corresponds well to the classical notion of a convex set. Moreover, we prove that a function X-midconvex set is a midconvex hull of all its extremal points. Other analogues of some classical results are also given. At the end we present an algorithmic approach to finding the midconvex hull of a given set.
pl
dc.subject.en
midconvex set
pl
dc.subject.en
midconvex function
pl
dc.subject.en
midconvex hull
pl
dc.description.volume
2013
pl
dc.description.publication
1
pl
dc.identifier.doi
10.1186/1029-242X-2013-42
pl
dc.identifier.eissn
1029-242X
pl
dc.title.journal
Journal of Inequalities and Applications
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
pl
dc.subtype
Article
pl
dc.identifier.articleid
42
pl
dc.rights.original
CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0;