Jagiellonian University Repository

Resolution invariant neural classifiers for dermoscopy images of melanoma


Resolution invariant neural classifiers for dermoscopy images of melanoma

Show full item record

dc.contributor.author Surówka, Grzegorz [SAP11016006] pl
dc.contributor.author Ogorzałek, Maciej [SAP11018332] pl
dc.contributor.editor Rutkowski, Leszek pl
dc.contributor.editor Korytkowski, Marcin pl
dc.contributor.editor Scherer, Rafał pl
dc.contributor.editor Tadeusiewicz, Ryszard pl
dc.contributor.editor Zadeh, Lotfi A. pl
dc.contributor.editor Zurada, Jacek M. pl
dc.date.accessioned 2018-03-19T13:55:18Z
dc.date.available 2018-03-19T13:55:18Z
dc.date.issued 2017 pl
dc.identifier.isbn 978-3-319-59062-2 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/52181
dc.language eng pl
dc.rights Dodaję tylko opis bibliograficzny *
dc.rights.uri *
dc.title Resolution invariant neural classifiers for dermoscopy images of melanoma pl
dc.type BookSection pl
dc.pubinfo Cham : Springer International Publishing pl
dc.description.physical 175-186 pl
dc.abstract.en This article contributes to the Computer Aided Diagnosis (CAD) of melanoma pigmented skin cancer. We test back-propagated Artificial Neural Network (ANN) classifiers for discrimination in benign and malignant skin lesions. Features used for the classification are derived from wavelet decomposition coefficients of the dermoscopy image. We show the most efficient ANN setups as a function of the structure of hidden layers and the network learning algorithms. Our network topologies are limited for the sake of restrictions in memory and processing power of smartphones which are more and more popular as hand-held ‘mobile’ CAD devices for melanoma. We claim resolution invariance of the selected wavelet features. pl
dc.description.series Lecture Notes in Computer Science, ISSN 0302-9743, eISSN 1611-3349; 10245 pl
dc.description.series Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence pl
dc.description.volume 1 pl
dc.description.publication 0,7 pl
dc.description.conftype international pl
dc.identifier.doi 10.1007/978-3-319-59063-9_16 pl
dc.identifier.eisbn 978-3-319-59063-9 pl
dc.title.container Artificial Intelligence and Soft Computing : 16th International Conference, ICAISC 2017, Zakopane, Poland, June 11-15, 2017 : proceedings pl
dc.language.container eng pl
dc.affiliation Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych pl
dc.subtype ConferenceProceedings pl
dc.conference 16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017; 2017-06-11; 2017-06-15; Zakopane; Polska; indeksowana w Web of Science; indeksowana w Scopus; ; ICAISC; pl
dc.rights.original bez licencji pl
dc.publisher.ministerial Springer pl

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)