Word embeddings for morphologically complex languages
pl
dc.type
JournalArticle
pl
dc.description.physical
127-138
pl
dc.abstract.en
Recent methods for learning word embeddings, like GloVe orWord2Vec, succeeded in spatial representation of semantic and syntactic relations. We extend GloVe by introducing separate vectors for base form and grammatical form of a word, using morphosyntactic dictionary for this. This allows vectors to capture properties of words better. We also present model results for word analogy test and introduce a new test based on WordNet.
pl
dc.subject.en
machine learning
pl
dc.subject.en
word embeddings
pl
dc.subject.en
natural language processing
pl
dc.subject.en
morphology
pl
dc.description.volume
25
pl
dc.identifier.doi
10.4467/20838476SI.16.010.6191
pl
dc.identifier.eissn
2083-8476
pl
dc.title.journal
Schedae Informaticae
pl
dc.language.container
eng
pl
dc.affiliation
Wydział Matematyki i Informatyki
pl
dc.subtype
Article
pl
dc.rights.original
OTHER; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0