Jagiellonian University Repository

Single-molecule rotational switch on a dangling bond dimer bearing


Single-molecule rotational switch on a dangling bond dimer bearing

Show full item record

dc.contributor.author Godlewski, Szymon [SAP13903357] pl
dc.contributor.author Kawai, Hiroyo pl
dc.contributor.author Kolmer, Marek [SAP13036853] pl
dc.contributor.author Zuzak, Rafał [SAP14004865] pl
dc.contributor.author Echavarren, Antonio M. pl
dc.contributor.author Joachim, Christian pl
dc.contributor.author Szymoński, Marek [SAP11006649] pl
dc.contributor.author Saeys, Mark pl
dc.date.accessioned 2016-11-25T12:46:18Z
dc.date.available 2016-11-25T12:46:18Z
dc.date.issued 2016 pl
dc.identifier.issn 1936-0851 pl
dc.identifier.uri http://ruj.uj.edu.pl/xmlui/handle/item/32920
dc.language eng pl
dc.rights Dodaję tylko opis bibliograficzny *
dc.rights.uri *
dc.title Single-molecule rotational switch on a dangling bond dimer bearing pl
dc.type JournalArticle pl
dc.description.physical 8499-8507 pl
dc.abstract.en One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices. pl
dc.subject.en hydrogenated semiconductor surface pl
dc.subject.en molecular rotor pl
dc.subject.en molecular switch pl
dc.subject.en organic molecule pl
dc.subject.en scanning tunneling microscope pl
dc.subject.en single-molecule devices pl
dc.subject.en single-molecule manipulation pl
dc.subject.en surface dangling bonds pl
dc.description.volume 10 pl
dc.description.number 9 pl
dc.identifier.doi 10.1021/acsnano.6b03590 pl
dc.identifier.eissn 1936-086X pl
dc.title.journal ACS Nano pl
dc.language.container eng pl
dc.affiliation Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego pl
dc.subtype Article pl
dc.rights.original bez licencji pl
.pointsMNiSW [2016 A]: 45

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)