Jagiellonian University Repository

Molecular oxygen as a probe molecule in EPR spin labeling studies of membrane structure and dynamics


Molecular oxygen as a probe molecule in EPR spin labeling studies of membrane structure and dynamics

Show full item record

dc.contributor.author Subczynski, Witold K. pl
dc.contributor.author Widomska, Justyna pl
dc.contributor.author Raguz, Marija pl
dc.contributor.author Pasenkiewicz-Gierula, Marta [SAP11006224] pl
dc.date.accessioned 2023-04-12T06:53:39Z
dc.date.available 2023-04-12T06:53:39Z
dc.date.issued 2022 pl
dc.identifier.issn 2673-9801 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/310240
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/legalcode.pl *
dc.title Molecular oxygen as a probe molecule in EPR spin labeling studies of membrane structure and dynamics pl
dc.type JournalArticle pl
dc.description.physical 295-316 pl
dc.description.additional Bibliogr. s. 312-316 pl
dc.abstract.en Molecular oxygen ($O_{2}$) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane’s different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin–lattice relaxation times ($T_{1}s$) of spin labels and rates of bimolecular collisions between $O_{2}$ and the nitroxide fragment. Thanks to the long T1 of lipid spin labels (from 1 to 10 µs), the approach is very sensitive to changes of the local (around the nitroxide fragment) $O_{2}$ diffusion-concentration product. Small variations in the lipid packing affect $O_{2}$ solubility and $O_{2}$ diffusion, which can be detected by the shortening of $T_{1}$ of spin labels. Using $O_{2}$ as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics and, hence, the membrane properties in three dimensions. pl
dc.subject.en molecular oxygen pl
dc.subject.en lipid spin labels pl
dc.subject.en EPR pl
dc.subject.en lipid bilayer membranes pl
dc.subject.en membrane fluidity pl
dc.subject.en membrane domains pl
dc.subject.en cholesterol pl
dc.description.volume 2 pl
dc.description.number 3 pl
dc.identifier.doi 10.3390/oxygen2030021 pl
dc.identifier.eissn 2673-9801 pl
dc.title.journal Oxygen pl
dc.language.container eng pl
dc.affiliation Wydział Biochemii, Biofizyki i Biotechnologii : Zakład Biofizyki Obliczeniowej i Bioinformatyki pl
dc.subtype ReviewArticle pl
dc.rights.original CC-BY; otwarte czasopismo; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl

Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa