Analysis of Functional Magnetic Resonance imaging (fMRI) time series plays a vital role in identifying the activation behaviour of neurons in the human brain. However, due to the complexity of the fMRI data, its analysis is challenging. Some studies show that the clustering methods can be beneficial in this respect. We apply a Neutrosophic Set-Based Clustering Algorithm (NEBCA) to fMRI time series datasets by this motivation. For the experimental purpose, we consider fMRI time series related to working memory tasks and resting-state. The clusters with different densities for the two analyzed cases are determined and compared. The identified differences indicate brain regions involved with the processing of the short-memory tasks. The corresponding brain areas are denoted according to Automated Anatomical Labeling (AAL) atlas. The statistical reliability of the findings is verified through various statistical tests. The presented results demonstrate the utility of the neutrosophic set based algorithm in brain neural data analysis.
keywords in English:
neutrosophic set, entropy, clustering, functional Magnetic Resonance Imaging (fMRI) time series
number of pulisher's sheets:
0,4
affiliation:
Wydział Zarządzania i Komunikacji Społecznej : Instytut Psychologii Stosowanej, Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa