Jagiellonian University Repository

Entropic representation in the theory of molecular electronic structure


Entropic representation in the theory of molecular electronic structure

Show full item record

dc.contributor.author Nalewajski, Roman [SAP11006579] pl
dc.date.accessioned 2015-02-06T07:57:45Z
dc.date.available 2015-02-06T07:57:45Z
dc.date.created 2012 pl
dc.date.issued 2013 pl
dc.identifier.issn 0259-9791 pl
dc.identifier.uri http://ruj.uj.edu.pl/xmlui/handle/item/2864
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title Entropic representation in the theory of molecular electronic structure pl
dc.type JournalArticle pl
dc.description.physical 297-315 pl
dc.identifier.weblink https://link.springer.com/content/pdf/10.1007%2Fs10910-012-0084-9.pdf pl
dc.abstract.en The entropic perspective on the molecular electronic structure is investigated. Information-theoretic description of electron probabilities is extended to cover thecomplexamplitudes(wavefunctions)ofquantummechanics.This analysis emphasizes the entropic concepts due to the phase part of electronic states, which generates the probability currentdensity, thus allowing one to distinguish the information content of states generating the same electron density and differing in their current densities. The classical information measures of Fisher and Shannon, due to the probability/density distributions themselves, are supplemented by the nonclassical terms generated by the wave-function phase or the associated probability current. A complementary character of the Fisher and Shannon information measures is explored and the relationship between these classical information densities is derived. It is postulated to characterize also their nonclassical (phase/current-dependent) contributions. The continuity equations of the generalized information densities are examined and the associated nonclassical information sources are identified. The variational rules involving the quantum-generalized Shannon entropy, which generate the stationary and time-dependent Schrödinger equations from the relevant maximum entropy principles, are discussed and their implications for the system “thermodynamic” equilibrium states are examined. It is demonstrated that the lowest, stationary “thermodynamic” state differs from the true ground state of the system, by exhibiting the space-dependent phase, linked to the modulus part of the wave function, and hence also a nonvanishing probability current. pl
dc.subject.en electronic structure theory pl
dc.subject.en quantum mechanics pl
dc.subject.en Schrödinger equation pl
dc.subject.en thermodynamic states pl
dc.subject.en quantum fisher information pl
dc.subject.en nonclassical entropy pl
dc.subject.en maximum entropy principle pl
dc.subject.en information continuity equations pl
dc.description.volume 51 pl
dc.description.number 1 pl
dc.description.points 25 pl
dc.identifier.doi 10.1007/s10910-012-0084-9 pl
dc.identifier.eissn 1572-8897 pl
dc.title.journal Journal of Mathematical Chemistry pl
dc.language.container eng pl
dc.date.accession 2019-02-06 pl
dc.affiliation Wydział Chemii : Zakład Chemii Teoretycznej im. K. Gumińskiego pl
dc.subtype Article pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0; pl
dc.identifier.project ROD UJ / P pl
.pointsMNiSW [2013 A]: 25

Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa