Jagiellonian University Repository

Poincaré duality for $L^{p}$ cohomology on subanalytic singular spaces

pcg.skipToMenu

Poincaré duality for $L^{p}$ cohomology on subanalytic singular spaces

Show full item record

dc.contributor.author Valette, Guillaume [SAP14007753] pl
dc.date.accessioned 2021-06-08T08:10:25Z
dc.date.available 2021-06-08T08:10:25Z
dc.date.issued 2021 pl
dc.identifier.issn 0025-5831 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/272220
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title Poincaré duality for $L^{p}$ cohomology on subanalytic singular spaces pl
dc.type JournalArticle pl
dc.description.physical 789-823 pl
dc.abstract.en We investigate the problem of Poincaré duality for $L^{p}$ differential forms on bounded subanalytic submanifolds of Rn (not necessarily compact). We show that, when p is sufficiently close to 1 then the $L^{p}$ cohomology of such a submanifold is isomorphic to its singular homology. In the case where p is large, we show that Lp cohomology is dual to intersection homology. As a consequence, we can deduce that the $L^{p}$ cohomology is Poincaré dual to Lq cohomology, if p and q are Hölder conjugate to each other and p is sufficiently large. pl
dc.description.volume 380 pl
dc.description.number 1-2 pl
dc.identifier.doi 10.1007/s00208-021-02151-4 pl
dc.identifier.eissn 1432-1807 pl
dc.title.journal Mathematische Annalen pl
dc.language.container eng pl
dc.affiliation Wydział Matematyki i Informatyki : Instytut Matematyki pl
dc.subtype Article pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project 2014/13/B/ST1/00543 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2021 A]: 200


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa