Jagiellonian University Repository

Generalized multipliers for left-invertible operators and applications

pcg.skipToMenu

Generalized multipliers for left-invertible operators and applications

Show full item record

dc.contributor.author Pietrzycki, Paweł [SAP14009862] pl
dc.date.accessioned 2020-11-08T18:55:26Z
dc.date.available 2020-11-08T18:55:26Z
dc.date.issued 2020 pl
dc.identifier.issn 0378-620X pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/252959
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title Generalized multipliers for left-invertible operators and applications pl
dc.type JournalArticle pl
dc.abstract.en Generalized multipliers for a left-invertible operator T, whose formal Laurent series $Ux(z)=∑∞n=1(PETnx)1zn+∑∞n=0(PET′∗nx)zn$, $x∈H$ actually represent analytic functions on an annulus or a disc are investigated. We show that they are coefficients of analytic functions and characterize the commutant of some left-invertible operators, which satisfies certain conditions in its terms. In addition, we prove that the set of multiplication operators associated with a weighted shift on a rootless directed tree lies in the closure of polynomials in z and 1z of the weighted shift in the topologies of strong and weak operator convergence. pl
dc.subject.en left-invertible operator pl
dc.subject.en (generalized) multipliers pl
dc.subject.en commutant pl
dc.subject.en analytic model pl
dc.subject.en composition operator pl
dc.subject.en weighted shift on directed three pl
dc.description.volume 92 pl
dc.identifier.doi 10.1007/s00020-020-02598-1 pl
dc.identifier.eissn 1420-8989 pl
dc.title.journal Integral Equations and Operator Theory pl
dc.language.container eng pl
dc.affiliation Wydział Matematyki i Informatyki : Instytut Matematyki pl
dc.subtype Article pl
dc.identifier.articleid 41 pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2020 A]: 100


Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa