Jagiellonian University Repository

Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium


Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium

Show full item record

dc.contributor.author Guerrero, Pilar pl
dc.contributor.author Perez-Carrasco, Ruben pl
dc.contributor.author Zagórski, Marcin [SAP13037086] pl
dc.contributor.author Page, David pl
dc.contributor.author Kicheva, Anna pl
dc.contributor.author Briscoe, James pl
dc.contributor.author Page, Karen M. pl
dc.date.accessioned 2019-12-20T13:36:28Z
dc.date.available 2019-12-20T13:36:28Z
dc.date.issued 2019 pl
dc.identifier.issn 0950-1991 pl
dc.identifier.uri https://ruj.uj.edu.pl/xmlui/handle/item/129673
dc.language eng pl
dc.rights Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa *
dc.rights.uri http://creativecommons.org/licenses/by/4.0/pl/legalcode *
dc.title Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium pl
dc.type JournalArticle pl
dc.abstract.en Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. pl
dc.subject.en computational modelling pl
dc.subject.en epithelial mechanics pl
dc.subject.en neural tube pl
dc.subject.en tissue mechanics pl
dc.subject.en vertex model pl
dc.description.volume 146 pl
dc.description.number 23 pl
dc.identifier.doi 10.1242/dev.176297 pl
dc.identifier.eissn 1477-9129 pl
dc.title.journal Development pl
dc.language.container eng pl
dc.affiliation Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego pl
dc.subtype Article pl
dc.identifier.articleid dev176297 pl
dc.rights.original CC-BY; inne; ostateczna wersja wydawcy; w momencie opublikowania; 0 pl
dc.identifier.project ROD UJ / OP pl
.pointsMNiSW [2019 A]: 140

Files in this item

This item appears in the following Collection(s)

Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa Except where otherwise noted, this item's license is described as Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa