The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT.
affiliation:
Wydział Chemii : Zakład Chemii Teoretycznej im. K. Gumińskiego