Repozytorium Uniwersytetu Jagiellońskiego

Bioactive hydrogel-nanosilica hybrid materials : a potential injectable scaffold for bone tissue engineering

Bioactive hydrogel-nanosilica hybrid materials : a ...

Metadane (Dublin Core)

dc.contributor.author Lewandowska-Łańcucka, Joanna [SAP13902315] pl
dc.contributor.author Fiejdasz, Sylwia [USOS8308] pl
dc.contributor.author Rodzik-Czałka, Łucja [USOS102821] pl
dc.contributor.author Kozieł, Marcin [SAP14000686] pl
dc.contributor.author Nowakowska, Maria [SAP11005597] pl
dc.date.accessioned 2015-06-26T11:30:01Z
dc.date.available 2015-06-26T11:30:01Z
dc.date.issued 2015 pl
dc.identifier.issn 1748-6041 pl
dc.identifier.uri http://ruj.uj.edu.pl/xmlui/handle/item/10501
dc.language eng pl
dc.title Bioactive hydrogel-nanosilica hybrid materials : a potential injectable scaffold for bone tissue engineering pl
dc.type JournalArticle pl
dc.abstract.en Novel bioactive organic–inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems. pl
dc.description.volume 10 pl
dc.description.number 1 pl
dc.identifier.doi 10.1088/1748-6041/10/1/015020 pl
dc.identifier.eissn 1748-605X pl
dc.title.journal Biomedical Materials pl
dc.language.container eng pl
dc.affiliation Wydział Chemii : Zakład Chemii Fizycznej i Elektrochemii pl
dc.affiliation Wydział Chemii : Zakład Krystalochemii i Krystalofizyki pl
dc.subtype Article pl
dc.identifier.articleid 015020 pl
dc.rights.original bez licencji pl
.pointsMNiSW [2015 A]: 30


Pliki tej pozycji

Plik Rozmiar Format Przeglądanie

Nie ma plików powiązanych z tą pozycją.

Pozycja umieszczona jest w następujących kolekcjach