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Longitudinal spin polarization in a thermal model
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We use a thermal model with single freeze-out to determine longitudinal polarization of � hyperons
emitted from a hot and rotating hadronic medium. We consider the top RHIC energies and use the model
parameters determined in the previous analyses of particle spectra and elliptic flow. Using a direct connection
between the spin polarization tensor and thermal vorticity, we reproduce earlier results which indicate a
quadrupole structure of the longitudinal component of the polarization three-vector with an opposite sign
compared to that found in the experiment. We further use only the spatial components of the thermal
vorticity in the laboratory system to define polarization and show that this leads to the correct sign and
magnitude of the quadrupole structure. This procedure resembles a non-relativistic connection between
the polarization three-vector and vorticity employed in other works. In general, our results bring further
evidence that the spin polarization dynamics in heavy-ion collisions may be not directly related to the
thermal vorticity. The additional material explains the construction of the hydrodynamically consistent gra-
dients of fluid velocity and temperature in thermal models with the help of the perfect-fluid equations of
motion.
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I. INTRODUCTION

Non-central heavy-ion collisions at the relativistic beam
energies bring large orbital angular momentum into produced
systems. A non-negligible part of such an angular momentum
can be further transformed from the initial purely orbital form
into the spin part. The latter can be naturally revealed in the
spin polarization of emitted particles [1–4].

Indeed, the spin polarization of � and �̄ hyperons was
measured recently by the STAR Collaboration at RHIC [5,6].
The result indicates global spin polarization along the di-
rection perpendicular to the reaction plane, which suggests
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possible connections to the Einstein–de Haas and Barnett
effects [7,8].

The experimental results on the global polarization can be
successfully explained by the hydrodynamic models [9,10].
The basic quantity giving rise to spin polarization in this
case is thermal vorticity �μν defined by the expression
�μν = − 1

2 (∂μβν − ∂νβμ), where βμ is the ratio of the flow
velocity uμ to local temperature T , βμ = uμ/T [11,12]. The
general physics situation is obscured, however, by the fact
that the theoretically predicted longitudinal polarization of
�’s [13] has opposite dependence on the azimuthal angle of
the emitted particles, as compared to the experimentally found
values [14].

For our further considerations, it is useful to notice that
most of the theoretical frameworks used to describe spin
polarization deal with particles at freeze-out [3,15]. This is
natural in the approaches that directly connect spin polar-
ization with the “vortical” properties of the fluid [9,16,17].
In such a scenario, the spin polarization tensor ωμν follows
immediately the space-time changes of the thermal vorticity
�μν ; hence, it is enough to consider the two quantities at
freeze-out.
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To get more insight into the role played by the thermal
vorticity at freeze-out, in this work we use one of the versions
of the thermal models to analyze the origin of the final
longitudinal spin polarization. Thermal models describe very
well the last stages of heavy-ion collisions (for example, see
Refs. [18–22]); therefore, they seem to be a natural framework
to study the spin polarization of the emitted hadrons such as
the � hyperons. Herein, we use the single freeze-out (SF)
model [23], which neglects hadronic rescattering in the final
state. This model was very successfully used in the past
to describe various features of soft hadron production. In
particular, it was used for Au+Au collisions at the highest
RHIC energies, where the data describing longitudinal spin
polarization are now available. Consequently, in this work we
do not have to introduce any new parameters—we rely on the
previous estimates.

To calculate the thermal vorticity �μν , we need the knowl-
edge of fluid field gradients on the freeze-out hypersurface.
Using perfect-fluid hydrodynamic equations of motion, we
derive a general formula for the out-of-plane gradients in
terms of the in-plane gradients, which can be calculated
directly from the freeze-out surface parametrization.

Our first results reported below, based on the tight con-
nection of the spin polarization tensor ωμν with the thermal
vorticity �μν , confirm that the longitudinal spin polarization
has a quadrupole structure with an opposite sign compared
to the measured signal. To study the spin polarization ef-
fects in more detail we explore yet another case, where the
spin polarization tensor is not directly related to the thermal
vorticity.

The idea that the spin polarization tensor can evolve inde-
pendently from the thermal vorticity was put forward first in
Ref. [24] and developed in Refs. [25–28] (for a recent review
see Ref. [29] and for related works see Refs. [30–34]). In the
perfect-fluid approach to hydrodynamics with spin, proposed
in Ref. [24], the space-time evolution of the spin polarization
tensor is determined by the conservation law for the total
angular momentum (we note that for particles with spin this
conservation law takes a non-trivial form). An example of
such an evolution, in the case of a simple one-dimensional and
boost-invariant expansion, was analyzed recently in Ref. [35].

The model used in this work is also boost invariant but
includes a non-trivial transverse hydrodynamic expansion that
leads to vortical structures in the transverse plane that, in
turn, can induce the longitudinal spin polarization at midra-
pidity, if a certain type of relation between vorticity and spin
polarization is assumed. However, due to the assumed boost
invariance, the present approach yields zero polarization in the
transverse direction at midrapidity.

In addition to the case where the spin polarization tensor
is directly defined in terms of the thermal vorticity, ωμν =
�μν , we also consider the case where only the spatial com-
ponents of the thermal vorticity in the laboratory (LAB)
frame are taken into account. In the latter case, dubbed
below as the case with the projected thermal vorticity, we as-
sume that ωμν = �αβ	̄α

μ	̄β
ν , where 	̄μν = gμν − uμ

LABuν
LAB,

uμ
LAB = (1, 0, 0, 0), and the metric tensor is chosen as gμν =

diag(+1,−1,−1,−1). Such a relation is similar to the non-

relativistic treatment of the polarization-vorticity coupling,
which is able to correctly describe the sign of the longitudinal
polarization [36]. Indeed, it turns out that with the choice
ωμν = �αβ	̄α

μ	̄β
ν one can describe the quadrupole structure

of the longitudinal polarization with the correct sign. As a con-
sequence, our results give further evidence that the dynamics
of spin polarization may be decoupled from the space-time
behavior of the thermal vorticity.

Notation and conventions. Unless specified otherwise, the
scalar product of two four-vectors aμ and bμ is denoted by a ·
b = aμbμ = gμνaμbν = a0b0 − a · b, where bold font is used
to represent three-vectors. The convention ε0123 = −ε0123 =
+1 is used for the Levi-Cività tensor εμνρσ . Natural units h̄ =
c = kB = 1 are used throughout the text.

II. SINGLE FREEZE-OUT MODEL

A. General concept

In the thermal SF model one assumes that the chemical
and thermal freeze-outs coincide; i.e., there is no hadronic
rescattering included after the chemical freeze-out. The chem-
ical freeze-out is assumed to take place on a space-time
hypersurface where all hadrons (stable and unstable with
respect to strong interactions) are created. Unstable hadrons
decay, giving contributions to the yields of stable hadrons.
At this level one can perform a traditional analysis of the
ratios of hadronic abundances and determine thermodynamic
parameters characterizing the chemical freeze-out, such as the
freeze-out temperature T and baryon chemical potential μ.

In addition to the ratios of hadronic yields, the assumption
about the single freeze-out allows us to directly calculate
hadronic spectra—provided one knows the hydrodynamic
flow of matter on the freeze-out hypersurface, uμ, as well as
the space-time geometry of the freeze-out hypersurface. As a
matter of fact, the form of the flow can be treated as a model
input, to be determined from the analyses of the spectra of
various particles. We note that for boost-invariant systems,
one fits only the transverse-momentum spectra.

In its original formulation, aiming at the description of
heavy-ion collisions at very high energies, the SF model has
four parameters: two thermodynamic ones and two geometric
ones. The two thermodynamic parameters, temperature T
and baryon chemical potential μ, are fitted from the ratios
of hadronic abundances. The two geometric parameters, τ f

and rmax, characterize the freeze-out hypersurface and the
hydrodynamic flow. The freeze-out hypersurface is defined
by the conditions τ 2

f = t2 − x2 − y2 − z2 and x2 + y2 � r2
max.

The hydrodynamic flow has the Hubble-like form uμ = xμ/τ .

B. Asymmetry in transverse plane

To include the phenomena such as an elliptic flow, the
original version of the SF model was extended to include the
elliptic deformations of both the emission region in the trans-
verse plane and of the transverse flow [37]. This was achieved
by using the following parametrization of the boundary region
in the transverse plane:

x = rmax

√
1 − ε cos φ, y = rmax

√
1 + ε sin φ. (1)
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Here φ is the azimuthal angle, while rmax and ε are the model
parameters. With ε > 0 the system formed in the collisions
is elongated in the y direction, i.e., out of the reaction plane
(resembling a characteristic almond shape).

The asymmetric flow profile is accordingly defined as
follows:

uμ =
(

t

N
,

x

N

√
1 + δ,

y

N

√
1 − δ,

z

N

)
, (2)

where δ is a parameter accounting for the transverse flow
anisotropy. For δ > 0, there is more flow in the reaction plane,
an effect that can be identified as the elliptic flow. Using
the normalization condition uμuμ = 1, one can determine the
normalization factor in Eq. (2),

N =
√

τ 2 − (x2 − y2)δ, (3)

where τ is the proper time

τ 2 = t2 − x2 − y2 − z2. (4)

The parameters ε and δ are two additional parameters needed
to describe the effects of non-trivial dynamics in the transverse
plane in the case of non-central collisions. We note that
all our parametrizations hold in the LAB frame which can
be identified with the center-of-mass frame of the colliding
nuclei.

In the following, we assume that freeze-out takes place at a
constant value of the proper time, temperature, and chemical
potential, i.e., at τ = τ f , T = Tf , and μ = μ f . In this case
a three-dimensional element of the freeze-out hypersurface,
	�λ, is given by the formula

	�λ = nλ dxdy τ f dη, (5)

where the surface norm vector is given by

nλ = 1
τ f

(√
τ 2

f + x2 + y2 cosh η, x, y,
√

τ 2
f + x2 + y2 sinh η

)
.

(6)

Here η = 1
2 ln [(t + z)/(t − z)] is the space-time rapidity. One

can easily notice that nλnλ = +1.

C. Thermal vorticity

The thermal vorticity defined above can be rewritten as a
sum of the two terms:

�μν = − 1

2T
(∂μuν − ∂νuμ) − 1

2T 2
(uμ∂νT − uν∂μT ). (7)

The parametrization of the hydrodynamic flow introduced
above allows us to determine the first term on the right-hand
side of Eq. (7). However, the second term contains temper-
ature gradients that are not defined in the thermal model—
we only know that the temperature gradients calculated in
directions that are parallel to the freeze-out hypersurface
should vanish. This problem can be overcome by assuming
that the temperature gradients follow from the hydrodynamic
calculations. In the physics case discussed herein, we can
assume that the baryon number density can be to a first
approximation neglected and we use the hydrodynamic equa-
tions summarized in Appendix A. A direct calculation that

uses Eq. (A4) shows that the second term on the right-hand
side of Eq. (7) is exactly equal to the first term.1 Using this
fact we obtain all the components of �μν :

�01 = tx

T N3
(1 + δ − √

1 + δ),

�02 = − ty

T N3
(
√

1 − δ − 1 + δ),

�03 = 0,

�12 = xy
√

1 − δ2

T N3
(
√

1 + δ − √
1 − δ),

�23 = − yz

T N3
(
√

1 − δ − 1 + δ),

�13 = xz

T N3
(1 + δ − √

1 + δ). (8)

It is important to emphasize at this point that the tempera-
ture gradients determined from the hydrodynamic flow might
be inconsistent with the form of the freeze-out hypersurface.
A constant temperature T on the freeze-out hypersurface �

requires that the gradient ∂μT is proportional to the four-
vector nμ defined by Eq. (6). In our case, we have checked
that this condition holds if one keeps the terms linear in δ only.
Since in the numerical calculations we use small values of δ,
our treatment of freeze-out is to a very good approximation
consistent with perfect-fluid hydrodynamic description.

In a general case, the hydrodynamic description of a
fluid uses space-like gradients of hydrodynamic quantities to
determine the time-like gradients. This allows to solve the
full space-time evolution of a system from initial conditions.
Although a SF model does not specify the entire pre-history
of such hydrodynamic evolution, we can nevertheless use the
hydrodynamic equations of motion to self-consistently deter-
mine the gradients of fluid fields. In Appendix B, we show
how the gradients of hydrodynamic variables on a constant
temperature T and chemical potential μ freeze-out surface
(in-plane derivatives) can be used to directly determine the
orthogonal gradients (out-of-plane derivatives). These results
might be useful in the formulations of thermal models that are
automatically consistent with perfect-fluid hydrodynamics.

D. Model parameters

In the form defined above, the SF model has altogether six
parameters: T = Tf (freeze-out temperature), μ (freeze-out
baryon chemical potential), rmax (transverse size), τ f (sys-
tem’s lifetime), ε (size deformation), and δ (flow deforma-
tion). The first two are determined solely by the ratios of
hadronic yields. In the case numerically studied below we use

1As shown in Appendix A, this property is independent of the form
of sound velocity (including its temperature dependence) but may
depend on our choice of the flow at freeze-out. It may also change
if dissipative hydrodynamics is used instead of the perfect-fluid
approached employed here. Interestingly, the numerical calculations
presented in Ref. [38] show a similar pattern to our model calcula-
tions.
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TABLE I. Thermal model parameters used to describe the
PHENIX data (

√
sNN = 130 GeV); see Ref. [42].

c % ε δ τ f (fm) rmax (fm)

0–15 0.055 0.12 7.666 6.540
15–30 0.097 0.26 6.258 5.417
30–60 0.137 0.37 4.266 3.779

Tf = 165 MeV. The value of the baryon chemical potential is
irrelevant for our study, since it cancels in the expressions for
the mean polarization (a consequence of the use of classical
statistics that is appropriate for heavy particles such as �’s).

The remaining four parameters should be obtained from
the fits of the hadron spectra and elliptic flow. The analyses
of this type were performed in the past and the resulting
values of the parameters describing various reactions studied
in different centrality bins can be found in Ref. [39]. The
values used herein are listed in Table I.

III. SPIN POLARIZATION OF PARTICLES

A. Pauli-Lubański four-vector

The mean spin polarization of particles can be directly
obtained from the Pauli-Lubański (PL) vector. The latter
is first calculated in the LAB frame for particles that are
produced on the freeze-out hypersurface with momentum p.
Subsequently, it is boosted to the rest frame of those particles.
In this frame, the PL vector has only space-like components.
We divide them by the number of particles with momentum
p to get the mean polarization. The mean spin polarization is
a three-vector whose components depend on the momenta of
particles. At midrapidity, the longitudinal polarization can be
studied as a function of transverse-momentum components px

and py.
The phase-space density of the PL four-vector �μ is given

by the expression [25]

Ep
d	�μ(x, p)

d3 p
= −1

2
εμναβ	�λEp

dSλ,να
GLW(x, p)

d3 p

pβ

m
. (9)

The particle four-momentum pλ can be parametrized in terms
of the transverse momentum pT =

√
p2

x + p2
y, rapidity yp, and

the azimuthal angle φp:

pλ = (Ep, px, py, pz )

= (mT cosh yp, pT cos φp, pT sin φp, mT sinh yp). (10)

Here mT =
√

m2 + p2
T is the transverse mass while m is the

mass of the particle. In the numerical calculations we assume
that m is equal to the � hyperon mass.

The expression dSλ,να
GLW(x, p)/d3 p in Eq. (9) denotes the

phase-space density of the spin tensor obtained in the de
Groot–van Leeuwen–van Weert (GLW) kinetic theory frame-
work [40]. It is given by the formula [27,40]

Ep
dSλ,να

GLW

d3 p
= cosh(ξ )

(2π )3m2
e−p·β pλ(m2ωνα + 2pδ p[νωα]

δ ), (11)

where ξ is the ratio of the (baryon) chemical potential and
the temperature, ξ = μ/T . Using Eq. (11) in Eq. (9) and
integrating over the freeze-out hypersurface, we can de-
fine the total value of the PL four-vector for particles with
momentum p,

Ep
d�μ(p)

d3 p
= − cosh(ξ )

2(2π )3m

∫
e−β·p 	� · p εμβρσ ωρσ pβ.

(12)
Now at the freeze-out, we can write

p · β = R1 cosh(yp − η) + R2. (13)

In the above expression the functions R1 and R2 are defined
by

R1 =
mT

√
τ 2

f + x2 + y2

Tf Nf
,

R2 = −xpx
√

1 + δ + ypy
√

1 − δ

Tf Nf
, (14)

where Tf is the freeze-out temperature and Nf =√
τ 2

f − (x2 − y2)δ.
In a similar way, we can also write

	� · p = [G1 cosh(yp − η) + G2]dxdydη, (15)

where

G1 = mT

√
τ 2

f + x2 + y2, G2 = −(xpx + ypy). (16)

B. Spin polarization defined by thermal vorticity

In this section we assume that thermal vorticity is equal
to spin polarization. In this case, the contraction of the dual
polarization tensor and four-momentum can be written in a
compact form as

1

2
εμβρσ�ρσ pβ =

⎡
⎢⎢⎣

G00 sinh(η) + G01 sinh(yp)
G10 sinh(yp − η)
G20 sinh(yp − η)

−G00 cosh(η) − G01 cosh(yp)

⎤
⎥⎥⎦ , (17)

where we defined the following auxiliary functions:

G00 = −
√

τ 2
f + x2 + y2

Tf N3
f

[ypx((1 − δ) − √
1 − δ)

−xpy((1 + δ) − √
1 + δ)],

G01 = −xymT

Tf N3
f

√
1 − δ2(

√
1 + δ − √

1 − δ),

G10 = − ymT

Tf N3
f

√
τ 2

f + x2 + y2[(1 − δ) − √
1 − δ],

G20 = xmT

Tf N3
f

√
τ 2

f + x2 + y2[(1 + δ) − √
1 + δ]. (18)
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Now using Eqs. (13), (15), and (17) in Eq. (12), the total PL
vector can be expressed as

Ep
d�μ(p)

d3 p
= cosh(ξ )

(2π )3m

⎡
⎢⎢⎣

− sinh(yp)
∫

A e−R2 F1dxdy
0
0

cosh(yp)
∫

A e−R2 F1dxdy

⎤
⎥⎥⎦, (19)

where

F1 = 2(G01G1 + G00G2)K1(R1) + 2G01G2K0(R1)

+ G00G1(K0(R1) + K2(R1)). (20)

Here Kn’s are the modified Bessel functions of the second
kind.

C. The mean PL four-vector

The mean PL four-vector is defined as a ratio of the total
PL vector (19) and the momentum density of all particles (i.e.,
of both particles and antiparticles):

〈πμ〉 =
Ep

d�μ(p)
d3 p

Ep
dN (p)

d3 p

. (21)

Here we can use the formula [35]

Ep
dN (p)

d3 p
= 4 cosh(ξ )

(2π )3

∫
	�λ pλ e−β·p . (22)

Substituting Eqs. (13) and (15) into Eq. (22) we can get

Ep
dN (p)

d3 p
= 8 cosh(ξ )

(2π )3

∫
A

e−R2 F2 dxdy, (23)

where

F2 = G1K1(R1) + G2K0(R1). (24)

The mean PL four-vector 〈π�
μ〉 in the particle rest frame

(PRF) can be obtained by using the canonical boost [41]

�(−vp) =

⎡
⎢⎢⎢⎣

Ep

m − px

m − py

m − pz

m

− px

m 1 + αp p2
x αp px py αp px pz

− py

m αp py px 1 + αp p2
y αp py pz

− pz

m αp pz px αp pz py 1 + αp p2
z

⎤
⎥⎥⎥⎦,

(25)

where αp = 1/(m(Ep + m)). In this way we find

〈π�
μ〉 = H

8m(mT cosh yp + m)

⎡
⎢⎣

0
−px sinh yp

−py sinh yp

m cosh yp + mT

⎤
⎥⎦, (26)

where

H =
∫

A e−R2 F1dxdy∫
A e−R2 F2dxdy

. (27)

It can be easily shown that 〈π�
μ〉〈πμ

� 〉 = 〈πμ〉〈πμ〉 = −P2 =
−H2/(64m2).

D. The case with projected thermal vorticity

To check how the polarization effects may depend on
the coupling between the spin polarization tensor and
the thermal vorticity, we consider herein also the case

where the spin polarization tensor is defined by the ex-
pression ωμν = �αβ	̄α

μ	̄β
ν . Here 	̄μν = gμν − uμ

LABuν
LAB

and uμ
LAB = (1, 0, 0, 0). This choice corresponds to setting

ωi j = �i j and ω0i = 0 in the previously discussed expres-
sions. A straightforward calculation leads in this case to the
formula

1

2
εμβρσωρσ pβ =

⎡
⎢⎣

G00 sinh(η) + G01 sinh(yp)
−G10 sinh(η) cosh(yp)
−G20 sinh(η) cosh(yp)

−G01 cosh(yp)

⎤
⎥⎦. (28)

Using Eqs. (13), (15), and (28) in Eq. (12), the total PL vector
can be expressed as

Ep
d�μ(p)

d3 p
= cosh(ξ )

(2π )3m

⎡
⎢⎢⎢⎣

− sinh(yp)
∫

A e−R2 F1dxdy

sinh(yp) cosh(yp)
∫

A e−R2 L1dxdy

sinh(yp) cosh(yp)
∫

A e−R2 L2dxdy

cosh(yp)
∫

A e−R2 L3dxdy

⎤
⎥⎥⎥⎦,

(29)

where

L1 = G1G10(K0(R1) + K2(R1)) + 2G2G10K1(R1),

L2 = G1G20(K0(R1) + K2(R1)) + 2G2G20K1(R1),

L3 = 2G01G1K1(R1) + 2G01G2K0(R1). (30)

Using Eqs. (23) and (29) in Eq. (21), we can calculate the
mean PL four-vector. Then, by boosting the mean polarization
to the particle rest frame, we find the following formula for the
mean longitudinal component of the PL four-vector:

〈π�
z 〉 = − 1

8m

[
(m cosh yp+mT )

(mT cosh yp+m)

∫
A e−R2 L3dxdy∫
A e−R2 F2dxdy

+ mT sinh2 yp

(mT cosh yp+m)

∫
A e−R2 (L3 − F1)dxdy∫

A e−R2 F2dxdy

]
. (31)

This expression is used in our numerical calculations pre-
sented below.

IV. RESULTS AND DISCUSSIONS

In this section we present our numerical results for the
longitudinal component of the mean PL four-vector, which
describes the longitudinal spin polarization of the �-hyperon
(m = 1.116 GeV). The model parameters used in the calcula-
tions are given in Table I. They were fitted before to describe
the PHENIX data at the beam energy

√
sNN = 130 GeV [42],

for the three centrality classes c = 0–15 %, c = 15–30 %, and
c = 30–60 % at freeze-out temperature Tf = 0.165 GeV.

Our results presented in Figs. 1–3 (corresponding to the
analyzed three centrality classes) show a quadrupole structure
of the longitudinal polarization, whose sign depends on the
choice of the definition of the spin polarization tensor ωμν .
In the case where the spin polarization tensor is equal to the
thermal vorticity [Figs. 1(a), 2(a), and 3(a)], we obtain an
opposite sign compared to that found in the experiment. We
note that a similar discrepancy was obtained in the earlier hy-
drodynamic calculations which used the relation ωμν = �μν .
On the contrary, the use of the projected thermal vorticity in
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FIG. 1. Longitudinal component of the PRF mean polarization three-vector of the � hyperons for the centrality class c = 0–15 %: (a) the
case where the spin polarization is defined by the thermal vorticity and (b) the case where we use the projected thermal vorticity defined in
Sec. III D.

the definition of the spin polarization leads to the correct sign
of the quadrupole structure [see Figs. 1(b), 2(b), and 3(b)].
It is also interesting to note that the magnitude of the effect
for the centrality class c = 30–60 % is similar to the observed
one (see Fig. 6 in Ref. [14], where the results for the centrality
class c = 10–60 % are shown).

Our choice to use the projected thermal vorticity as a
source of the spin polarization was motivated by the non-
relativistic calculations which, in the natural way, use only
the spatial components of the rotation ∂iv j − ∂ jvi. Why this
choice should be suitable for the description of the data
remains an open question, which could perhaps be addressed

if dynamical approaches describing the spin polarization in
heavy-ion collisions became available.

Finally, we showed how the hydrodynamic equations of
motion can be used to build hydrodynamically consistent
gradients of fluid velocity and temperature from the infor-
mation just on the freeze-out surface. The general formulas
summarized in Appendix B can be used to calculate gradients
terms like vorticity or shear-stress tensor from a freeze-out
surface parametrization.

We note that the quadrupole structure of the longitudinal
polarization was also studied in Refs. [34,43] and that during
the final preparation of this paper yet another paper discussing

FIG. 2. Same as Fig. 1 but for the centrality class c = 15–30 %.
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FIG. 3. Same as Fig. 1 but for the centrality class c = 30–60 %.

the longitudinal polarization appeared [44], which analyzes
different forms of vorticity. In fact, its conclusions show that
the correct sign of the longitudinal spin polarization may
be obtained using the so-called T -vorticity [45]. One should
stress, however, that the study was performed within a quite
different dynamical model (3+1D viscous hydrodynamics
with Glauber or AMPT initial conditions) from the one con-
sidered herein.
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APPENDIX A: HYDRODYNAMIC EQUATIONS
FOR BARYON-FREE MATTER

At the top RHIC energies studied in this work, one can
neglect the effects of baryon number density and use the hy-
drodynamic equations in a simplified form where the temper-
ature T and the flow four-vector uμ are the only independent
hydrodynamic variables. In this case, the equation of state
can be encoded in the temperature dependence of the sound
velocity, c2

s (T ) = d p(T )/de(T ), where e is the energy density
and p is the pressure. A more general case is considered in
Appendix B.

Herein we consider a perfect fluid characterized by the
energy-momentum tensor T μν = (e + p)uμuν − pgμν (with
g00 = +1). The energy and momentum conservation laws are
expressed by the formula

∂μT μν (x) = 0. (A1)

The four equations contained in Eq. (A1) can be rewritten as
a pair of the following two equations [46]:

Duα = 1

T
∇αT, (A2)

DT = −T c2
s ∂αuα, (A3)

where we have defined D = uα∂α and ∇α = ∂α − uαD and
used that e + p = sT and s(T ) = d p(T )/dT . Note that only
three equations in Eq. (A2) are linearly independent. After
simple manipulations, using Eqs. (A2) and (A3) yields the
formula for the temperature gradient:

∂αT = T
(
Duα − c2

s uα∂μuμ
)
. (A4)

This formula used in the second term on the right-hand side
of Eq. (7) gives −1/(2T )(uμDuν − uνDuμ). The first term on
the right-hand side of Eq. (7) is equal to −1/(2T )[(uμDuν −
uνDuμ) + (∇μuν − ∇νuμ)]. For our form of the flow the
term ∇μuν − ∇νuμ vanishes (this can be checked by a direct
calculation); hence the contributions from the two terms in
Eq. (7) are equal.

APPENDIX B: HYDRODYNAMICALLY CONSISTENT
GRADIENTS ON THE FREEZE-OUT SURFACE

In general the freeze-out hyper-surface � specifies the tem-
perature T (x), chemical potential μ(x), and velocity uμ(x) on
the three dimensional subspace of the Minkowski space-time.
Using the projector operator 	̃μν = (gμν − nμnν

n·n ), where nμ is
a non-null surface norm nμnμ = ±1,2 we can define in-plane
and out-of-plane projections of the covariant derivative on the
freeze-out surface:

∇̃μ ≡ 	̃ ν
μ Dν, D̃ ≡ nνDν . (B1)

2Formulas in this section are the same for both mostly positive and
mostly negative metric conventions.
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At each point on the freeze-out surface the full gradients of
hydrodynamic fields can be decomposed to a sum of in-plane
and out-of-plane contributions:

DμT = nμ

n · n
D̃T + ∇̃μT,

Dμuν = nμ

n · n
D̃uν + ∇̃μuν . (B2)

Without further assumptions about the fields on the surface
�, only the in-plane gradients can be calculated from the
information on the surface. However, for the expansion gov-
erned by the energy-momentum conservation, the in- and
out-of-plane gradients are related by the equations of motion.
For the case of a perfect fluid these equations reduce to

uνDνe = −(e + p)Dσ uσ , (B3)

uν

u · u
Dνuμ = 	μσ Dσ p

e + p
, (B4)

where the projection orthogonal to fluid velocity uμ is given
by 	μν ≡ gμν − uμuν

u·u . Note that in a perfect fluid approxi-
mation, the entropy per baryon is conserved, uμDμ(s/nB) =
0; therefore, the pressure gradient can be related to energy
gradients using the sound velocity [46]:

uμDμ p(e, s/nB) = c2
s uνDνe. (B5)

Here we can use one of the following expressions:

c2
s =

(
∂P

∂e

)
s/nB

= nB

e + p

(
∂P

∂nB

)
s/nB

= nB

w

(
∂w

∂nB

)
s/nB

, (B6)

where w = (e + P)/nB is the specific enthalpy (see
Refs. [46,47]).

For the freeze-out surface � with constant temperature
and baryon chemical potential, the energy density and pres-
sure are also constant along the freeze-out surface. We can
drop the in-plane gradients of energy and pressure, and also
use uνDν p|� = n·u

n·n D̃p and uνDνe|� = n·u
n·n D̃e together with

Eq. (B5) to relate the out-of-plane gradients of energy and
pressure,

D̃p = c2
s D̃e. (B7)

Eliminating energy from the equations of motion and col-
lecting the in-plane and out-of-plane gradients we arrive at

(
u · n

n · nu · u
gμσ + c2

s

	μρnρnσ

u · nn · n

)
D̃uσ

= −
(

uκgμλ

u · u
+ c2

s

	μρnρgκλ

u · n

)
∇̃κuλ. (B8)

Note that the system of equations in Eq. (B8) has only three
independent components, because of the orthogonality to fluid
velocity uμ; hence, it can be inverted if we restrict ourselves
to the sub-space projected by 	μν . Explicitly the necessary

inverse is(
u · n

n · nu · u
	μν + c2

s

	μρnρnσ	σν

u · nn · n

)−1

= n · nu · u

u · n
	μν − c2

s

n · n

u · n

	μρnρnσ 	σν

(u · n)2 + (u · u)c2
s nσ	σρnρ

.

(B9)

Then, applying Eq. (B9) to the right-hand side of Eq. (B8) and
performing straightforward simplifications, the out-of-plane
velocity gradients are given by

D̃uν = −n · n

u · n

×
(

uκ	νλ+ c2
s

−nσ	σλuκ + u· n	κλ

u· u(u· n)2+ c2
s nσ	σρnρ

	νρnρ

)
∇̃κuλ.

(B10)

Equation (B10) can be tested using known analytical solutions
of hydrodynamic equations of motion, e.g., Gubser flow [48].
The out-of-plane temperature gradients can be calculated
from Eq. (B3) and are given by the divergence of fluid
velocity. Leaving the details of derivation to Appendix C we
quote the final result,

D̃T

T
= −n · n

u · n
c2

s Dσ uσ
1 + nBμ

sT

1 + nB
s

(
∂μ

∂T

)
s/nB

, (B11)

where Dσ uσ = nμD̃uμ/n · n + ∇̃μuμ.
Note that thermodynamic quantities such as the speed of

sound, c2
s , or the derivative of the baryon chemical potential

are constant on the considered freeze-out surface and must be
determined from the microscopic description of the fluid at
freeze-out.

In summary, Eqs. (B10) and (B11) give a simple prescrip-
tion for constructing out-of-plane gradients for fluid fields
parametrized on an arbitrary non-null freeze-out surface of
constant temperature and chemical potential.

APPENDIX C: USEFUL THERMODYNAMIC IDENTITIES

Starting from the conservation of energy given by Eq. (B3),
where we consider energy density to be a function of T and
s/nB,

uνDνe(T, s/nB) = −(e + p)Dσ uσ , (C1)

and using the fact that entropy per baryon is conserved, we
obtain (

∂e

∂T

)
s/nB

u · n

n · n
D̃T = −(e + p)Dσ uσ . (C2)

Here we used DμT = nμ

n·n D̃T + ∇̃μT and dropped in-plane
gradients. This equation directly gives the out-of-plane tem-
perature gradient

D̃T

T
= − n · n (e + p)

u · n T
(

∂e
∂T

)
s/nB

Dσ uσ . (C3)
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Below we consider the thermodynamic quantity

κ = e + p

T
(

∂e
∂T

)
s/nB

(C4)

that enters Eq. (C3) and show that for small baryon number
densities it is reduced to c2

s . We first use the thermodynamic
identity [46,47]

e + p = nB

(
∂e

∂nB

)
s/nB

(C5)

and obtain

κ = nB

T

(
∂e
∂nB

)
s/nB(

∂e
∂T

)
s/nB

= nB

T

(
∂T

∂nB

)
s/nB

. (C6)

In the next step we switch to the specific enthalpy and connect
it with the sound velocity through Eq. (B6). In this way we get

κ = nB

T

(
∂T

∂w

)
s/nB

(
∂w

∂n

)
s/nB

= c2
s

w

T

(
∂T

∂w

)
s/nB

. (C7)

Since e + p = sT + nBμ, we may use w = (s/nB)T + μ to
obtain

κ = c2
s

(
1 + nBμ

sT

)(
1 + nB

s

(
∂μ

∂T

)
s/nB

)−1

. (C8)

Thus, for small baryon densities, nB/s � 1, or μ linear in T ,
we find that κ ≈ c2

s .
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