
Theoretical Computer Science Department
Faculty of Mathematics and Computer Science

Jagiellonian University

Hardness in theory of computing

Adam Polak

Ph.D. Thesis
Advisor: Paweł Idziak

Kraków, 2018

To my father

Preface

This thesis presents lower and upper bounds, which prove hardness of certain problems in
algorithmics and combinatorics. It consists of a series of published papers, which explore
two research directions: computational complexity and extremal combinatorics.

Adam Polak. Why is it hard to beat O(n2) for Longest Common
Weakly Increasing Subsequence? Information Processing Letters, volume
132, pages 1-5, 2018.

Lech Duraj, Marvin Künnemann, and Adam Polak. Tight Conditional
Lower Bounds for Longest Common Increasing Subsequence. Ex-
tended abstract in 12th International Symposium on Parameterized and Exact
Computation (IPEC 2017), Leibniz International Proceedings in Informatics
(LIPIcs), volume 89, pages 15:1-15:13, 2018.
Full version available online: https://arxiv.org/abs/1709.10075.

Grzegorz Guśpiel, Piotr Micek, and Adam Polak. On an Extremal Prob-
lem for Poset Dimension. Order – A Journal on the Theory of Ordered
Sets and its Applications, doi: 10.1007/s11083-017-9444-1, 2017.

In the first two papers, we study the computational complexity of problems related to
calculating similarity between sequences, i.e. the Longest Common (Weakly) Increasing
Subsequence problems. We prove that beating, by a polynomial factor, a simple quadratic
time dynamic programming algorithms for these problems would require refuting the
Strong Exponential Time Hypothesis.

The second direction of our research has an extremal combinatorics flavour. In the
final of the three papers, we consider a problem related to the Dushnik-Miller dimension
of a partial order, and prove that it is impossible to guarantee finding a two-dimensional
subposet of size asymptotically larger than n2/3 in every poset of size n.

Recently, we extended our study to the realm of online algorithms. In an unpublished
manuscript, we introduce a variant of the online graph coloring problem restricted to the
class of intersection graphs of intervals with lengths in the fixed range [1, σ], a natural
generalization of interval and unit-interval graph classes. We prove that no algorithm
beats the 5/2 asymptotic competitive ratio for all, arbitrarily large, values of σ.

Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Patryk Mikos, Adam Po-
lak, and Joanna Sokół. Online Coloring of Short Intervals. Manuscript,
2018. Available online: https://arxiv.org/abs/1802.09503.

3

Acknowledgements

First, let me thank my advisor, Paweł Idziak, for his many insightful suggestions. He
gave me a lot of encouragement to try and fail on my way to find out what really interests
me. I am also very grateful for his colossal effort and countless hours he spent teaching
me how to write mathematics. I have just rewritten this paragraph so that it is no longer
a single very long sentence. Does it mean his time has not been wasted?

As trivial as it sounds, this thesis would not look as it looks if not for my wonder-
ful co-authors: Lech Duraj, Grzegorz Guśpiel, Grzegorz Gutowski, Konstanty Junosza-
Szaniawski, Marvin Künnemann, Piotr Micek, Patryk Mikos, and Joanna Sokół. With
some of you I spent many days staring at a blank whiteboard, with others the collabora-
tion was short yet intense. Still, from each of you I learned something important. Thank
you!

All my colleagues from Theoretical Computer Science Department contributed to the
excellent work atmosphere, which makes me happy every time I come to the office. I owe
special thanks to Marcin Kozik and Bartosz Walczak, who generously offered me their
advice and encouragement, always when I needed it.

Let me also mention I am enormously indebted to my wife Kinga, who did her best
to be very understanding these many times I spent a night writing on a deadline.

Last but not least, I wish to thank two people, who might be unaware of their con-
tribution to my thesis, yet without them I would not develop my interest in fine-grained
complexity. I owe it to Arturs Backurs, who gave a wonderful talk at HALG 2016, and
Ola Svensson, who once urged me to give a seminar talk which required studying Arturs’s
paper very carefully.

The drawing on the title page was created by Felix Reidl. Thank you, Felix! I hope I
will develop my scientific toolbox so that not everything looks to me like a nail.

4

Contents

Introduction 6
1 Computational complexity . 7
2 Extremal combinatorics . 11
3 Online algorithms . 13
4 Bibliography . 16

Series of published papers
Why is it hard to beat O(n2) for Longest Common Weakly Increasing Subsequence?
Tight Conditional Lower Bounds for Longest Common Increasing Subsequence
On an Extremal Problem for Poset Dimension

Appendix: Unpublished manuscript
Online Coloring of Short Intervals

5

Introduction

Proving hardness or impossibility plays an important role in theoretical computer science.
On one hand, such proofs allow to avoid spending time on improving algorithms that
cannot be substantially improved. On the other, discovering reasons for which a particular
problem is hard gives us a good insight into the structure of objects involved in the
problem. There is a wide range of techniques used to prove hardness in a variety of
different settings. In this thesis we explore three research directions and establish hardness
results, demonstrating some of those settings.

The first problem we address lies within the scope of computational complexity. In
this territory unconditional hardness results, such as e.g. Ω(n log n) lower bound for
comparison-based sorting, are very rare exceptions. In general, we still lack tools to
prove that certain problems cannot be solved with fast algorithms – we do not even know
if CNF-SAT, which is hypothesized to require exponential time, cannot be solved in
linear time. It is thus common to focus on reductions between computational problems.
If a problem A can be reduced to a problem B, then a faster algorithm for B yields a
faster algorithm for A. The reduction lets us lift a conjectured hardness of A to hold
also for B. Depending on the choice of problem A, this does not necessarily mean that
fast algorithms for B do not exist, but it gives us a better understanding of both the
underlying structure of the problems and reasons why solving B efficiently is difficult.
When reductions go both ways, we can form equivalence classes. Each such class isolates
a number of problems, often very different from each other, but computationally hard for
some single basic reason.

The second question we address has the extremal combinatorics flavour. In this set-
ting, the basic research question usually concerns guarantees on the size of certain regular
substructures that can always be found within an arbitrary larger structure. Therefore,
proving hardness amounts to constructing an infinite family of counterexamples.

Our last research direction involves online algorithms, specifically for graph coloring
problems. In order to prove that no online algorithm can get close to the optimal offline
solution, it is often useful to describe the problem as a combinatorial game between two
players, Presenter and Algorithm. In each round Presenter reveals a vertex, together with
adjacent edges, and Algorithm immediately and irrevocably assigns it a color. While Al-
gorithm tries to minimize the number of colors, the Presenter’s goal is to force Algorithm
to use as many colors as possible. A strategy for Presenter implies a lower bound on the
performance of any algorithm solving the problem.

6

1 Computational complexity
Theoretical research in algorithmics focuses primarily on the worst-case time complexity
of computational problems. While algorithm design brings complexity upper bounds
simply by demonstrating algorithms with provable worst-case running time, complexity
theory usually needs much more indirect methods in order to deliver lower bounds.

Admittedly, time hierarchy theorems ascertain that for every (time-constructible)
function t(n) there exists a computational problem that can be solved in t(n) time but
not in t(n)1−ε time. However, it is usually very hard to prove this kind of statement for
a specific problem of our interest.

One of very rare examples of unconditional complexity lower bounds is Ω(n log n)
lower bound for sorting n keys. However, it holds only in a restricted model, where a
pairwise comparison is the only operation that is allowed to be performed on keys. In
practice, sorting is often applied to numbers and one can perform arithmetic operations
on them, thus the above lower bound does not apply, and it is in fact possible to sort
numbers faster (see, e.g., [24]).

For the moment, we still very much lack tools to prove meaningful unconditional
complexity lower bounds. Perhaps the most striking example of our helplessness is the
CNF-SAT problem: Given a Boolean formula in conjunctive normal form, i.e. a conjunc-
tion of disjunctions of literals, decide whether variables can be assigned the values TRUE
or FALSE in a way that the formula evaluates to TRUE. We do not know how to prove that
CNF-SAT cannot be solved in linear time, even though almost everybody believes it is
true, and most even believe that the problem requires exponential time.

For this reason, we settle for conditional lower bounds, i.e. hardness proofs under the
assumption of a widely believed hypothesis, usually regarding hardness of a well-studied
problem. Arguably the most popular such assumption is P 6= NP, which can be liberally
rephrased as CNF-SAT cannot be solved in polynomial time.

Under this assumption, problems which admit reductions from CNF-SAT in polyno-
mial time, i.e. NP-hard problems, cannot be solved in polynomial time, and thus they are
considered computationally hard. On the other hand, problems in P, i.e. those solvable
in polynomial time, are considered computationally easy.

For a long time this classic paradigm has remained dominant, for many good reasons:
(1) it is model-independent because a polynomial time algorithm for a Turing Machine
translates to a polynomial time algorithm in the RAM model and vice versa; (2) it
generates a good structure because a composition of polynomial time algorithms yields a
polynomial time algorithm; (3) when a problem admits a polynomial time algorithm, it
often admits one that is fast in practice, and we rarely see natural examples of O(n100)
time algorithms. Nonetheless, this distinction between easy and hard problems remains
very coarse.

Indeed, even if a problem is NP-hard and a polynomial time algorithm should not
be expected to exist, one might still be interested in obtaining the fastest possible ex-
ponential time algorithm. Besides, for problems in P, it happens that even a quadratic
time algorithm is too slow in practice, and one looks for a faster one, preferably running
in (near-)linear time. Without right tools to prove tight complexity lower bounds one
never knows if further speedups are possible or if the current algorithms are optimal. The
emergence of fine-grained complexity theory brought some such tools.

7

1.1 Hardness assumptions in fine-grained complexity

Recall that k-CNF-SAT denotes the CNF-SAT problem restricted to the formulas with
each clause being a disjunctions of at most k literals. Let

sk = inf{δ | k-CNF-SAT can be solved in O(2δn) time},

and let s∞ = limk→∞ sk. Our current knowledge about CNF-SAT suggests that the
following two statements might be true.

Hypothesis 1 (Exponential Time Hypothesis, ETH).

s3 > 0.

Hypothesis 2 (Strong Exponential Time Hypothesis, SETH).

s∞ = 1.

The two hypotheses were introduced by Impagliazzo, Paturi and Zane [25, 26], who
also proved that SETH implies ETH. Naturally, both imply P 6= NP, and thus they are
more bald assumptions1.

Since their introduction, ETH and SETH have been used as conditional assumptions
to prove a large number of lower bounds, which are way more precise than a simple
statement that an NP-hard problem is unlikely to admit a polynomial time algorithm.
For example, unless ETH fails, there is no 2o(n+m) time algorithm for Vertex Cover on
n-nodes m-edges graphs [26], as well as no 2o(

√
n) time algorithm for 3-Coloring on n-

nodes planar graphs [7], while, unless SETH fails, Dominating Set on n-nodes graphs of
treewidth t cannot be solved in (3 − ε)tpoly(n) time [34]. The book [11] offers a good
overview of ETH- and SETH-based lower bounds for parameterized and exact complexity.

The use of SETH as an assumption for hardness proofs for problems in P was initiated
by Williams [45]. After breakthrough works, of Roditty and Vassilevska Williams for
graph problems [42] and Bringmann for sequence problems [5], many polynomial time
algorithms were proved to be optimal under SETH (see, e.g., [47] for a survey).

Many of the SETH-based lower bounds go through an intermediate problem, the
Orthogonal Vectors problem (OV), defined as follows: Given two sets of d-dimensional
(0, 1)-vectors U ,V ⊆ {0, 1}d, both of the same size |U| = |V| = n, determine whether
there is a pair of vectors (u, v) ∈ U × V which are orthogonal, i.e., their inner product
u · v :=

∑d−1
i=0 (uivi) equals 0. The following conjecture is implied by SETH.

Hypothesis 3 (OV-Hypothesis). There is no O(n2−εpoly(d)) time algorithm for OV, for
any constant ε > 0.

For completeness, we recall the short proof of the above implication, using the split-
and-list technique of Williams [45].

1It is an author’s perception that roughly half of the theoretical computer science community believes
SETH is true, while only very few doubt ETH. Ryan Williams, known for his disbelief in SETH [46],
is attributed to say that chances he would be proved wrong during his lifetime are nil, and the author,
although himself a SETH-believer, cannot disagree.

8

Theorem 4 (Williams [45]). SETH implies OV-Hypothesis.

Proof. Take any CNF-SAT instance with n variables andm clauses, and split the variables
into two sets, each of size n/2. Consider every possible assignment to the variables from
the first set, and for each such assignment create an m-dimensional (0, 1)-vector whose
i-th coordinate equals 0 if the assignment satisfies the i-th clause. Let U denote the
just constructed set of 2n/2 vectors. Repeat the same procedure for the second half of
variables to obtain set V . Now, observe that a satisfying assignment to all variables can
be composed out of two partial assignments, one to the first half and one to the second
half, such that any clause is satisfied by at least one of them. This corresponds to the
condition that for each i ∈ [m] at least one of the two vectors, representing the two
partial assignments, has 0 as its i-th coordinate. That is, an assignment is satisfying if
and only if the two vectors are orthogonal. Therefore, if there is an O(n2−εpoly(d)) time
algorithm for OV, applying it to the sets U ,V yields an O(2(n/2)·(2−ε)poly(m)) algorithm
for CNF-SAT, which refutes SETH.

Note that lower bounds proved by a reduction from OV should be more believable
than those that follow directly from SETH. It is entirely possible that SETH is false while
OV-Hypothesis remains true.

Naturally, SETH is not the only conjecture commonly used to prove conditional lower
bounds for problems in P. Another popular assumption is the 3SUM-Hypothesis.

Hypothesis 5 (3SUM-Hypothesis). For any constant ε > 0, there is no O(n2−ε) time
algorithm for the 3SUM problem, defined as follows: Given a setA of n integers, determine
whether there are a, b, c ∈ A such that a+ b+ c = 0.

3SUM-based lower bounds are known since 1990s, when Gajentaan and Overmars [20]
introduced the 3SUM-Hypothesis and proved that, assuming this hypothesis is true,
a large number of computational geometry primitives – such as, e.g., given a set of
points in the plane, determine whether any three are colinear – require quadratic time.
However, only after a seminal paper by Pătraşcu [40] and follow-up works [30] – which used
linear hashing arguments to establish a connection between 3SUM and set-intersection-
like problems – the 3SUM-Hypothesis became a hardness assumption in domains other
than computational geometry.

Other problems whose conjectured hardness is used to prove complexity lower bounds
for problems in P include, e.g., All Pairs Shortest Paths [43], Combinatorial Boolean
Matrix Multiplication [32], (min,+)-convolution [12].

None of such conditional lower bounds should be considered an impossibility result
– certainly, any of the assumed hypotheses may turn out false. However, they give us a
better understanding of reasons why solving a given problem efficiently is difficult. With
the growing number of such results we start building a big picture of complexity within
P. It is interesting if some of the above hypotheses can be reduced to others, so that we
would have a single unifying hardness assumptions. However, recent results [8] suggest
that such a reduction is unlikely. It seems that the complexity landscape within P is
much more intricate than within NP, and, in particular, there is no single reason why
hard problems are hard.

9

1.2 Sequence comparison problems

The Longest Common Subsequence problem (LCS) and its variants are computational
primitives with a variety of applications, e.g. in spell checking, DNA sequence comparison,
or determining the differences of text files in the UNIX diff utility. The Wagner-Fischer
algorithm [44] for LCS is commonly taught at undergraduate level algorithms courses. It is
a simple example ofO(n2) time dynamic programming. The state-of-the-artO(n2/ log2 n)
time algorithm [36] dates back to the 1980s. Since then, the research community asked
whether a polynomial improvement over the quadratic time LCS algorithm is possible.

Recently, based on a line of research relating the CNF-SAT problem to quadratic time
problems [45, 42, 5, 3], it has been shown that unless SETH fails, there is no strongly
subquadratic time algorithm for LCS [1, 6]. Subsequent work [2] strengthens these lower
bounds to hold already under weaker assumptions, and even provides surprising conse-
quences of sufficiently strong polylogarithmic improvements.

1.3 Longest Common Increasing Subsequence

While the progress on LCS was stalled for many years, numerous related problems were
proposed and studied in the meantime, among them the Longest Common Increasing
Subsequence problem (LCIS), defined as follows: Given two integer sequences X and
Y , of length n, determine the length of the longest sequence Z such that Z is strictly
increasing and Z is a subsequence of both X and Y . The problem is loosely motivated
by biological sequence comparison tasks, and can also be seen as a generalization of the
well-studied Longest Increasing Subsequence (LIS) problem, which has an O(n log n) time
solution and a matching lower bound in the decision tree model [19].

LCIS was originally proposed by Yang, Huang, and Chao [48], who gave a quadratic
time algorithm using dynamic programming, leaving open the natural question whether
there exists a way to extend the near-linear time solution for LIS to a near-linear time
solution for two sequences. Only a partial progress on the question was possible. Let
us denote by r the number of matching pairs, i.e. (i, j) ∈ [n]2 such that X[i] = Y [j],
and by ` the length of the solution size. There is an algorithm for LCIS running in
O(r log ` log log n+ n log n) time [9], and another one running in O(n` log log n+ n log n)
time [31].

Even though all the algorithms mentioned above are devised to compute the Longest
Common Increasing Subsequence, they can be easily modified to also compute the Longest
Common Weakly Increasing Subsequence (LCWIS). While in the general case LCIS and
LCWIS seem very similar, they begin to differ after restricting the alphabet size.

For a constant size alphabet LCIS is trivially solvable in linear time – by enumerating
a constant number of all possible increasing sequences, and checking each of them in linear
time. Even if the number of symbols is not constant, but can be bounded by a sublinear
function of the input size, one can use the O(n` log log n+n log n) time algorithm [31] to
find LCIS in subquadratic time, since the output size cannot exceed the alphabet size.

The length of LCWIS is not bounded by the alphabet size, and the above solutions
for small alphabets do not apply. For 3-symbols alphabet Kutz et al. [31] proposed an
O(n log log n) time LCWIS algorithm, which was later improved to O(n) by Duraj [15].
However, already for 4-symbols alphabet nothing better than the general case quadratic
time algorithm is known. As we will see later, LCIS and LCWIS also differ in terms

10

of lower bounds, however the difference is in the proof techniques, not in the resulting
bounds itself.

To the best of our knowledge, LCIS and LCWIS are the only previously studied
variants of LCS which at the same time have the best known algorithms running in
quadratic time and whose quadratic-time hardness does not follow immediately from the
quadratic-time hardness of LCS [1, 6]. As such, it was open to determine whether there
are (strongly) subquadratic algorithms for LCIS or LCWIS, or whether such algorithms
can be ruled out under SETH.

1.4 Our results

We prove that neither LCIS nor LCWIS can be solved in strongly subquadratic time
unless SETH fails. This lower bound admits several generalizations, which we discuss
later.

Our proof follows the general outline of previous hardness proofs for other sequence
comparison problems, e.g. Fréchet Distance [5], Edit Distance [3], or LCS [1, 6]. We
provide fine-grained reductions from OV to LCIS and LCWIS. Our reductions are built
of two main ingredients: (1) relatively straightforward vector gadgets, encoding vector
inner product in the language of LCIS/LCWIS, and (2) a more involved glue, which let
us combine many vector gadgets into a single sequence.

First, we present a short proof of quadratic time lower bound for LCWIS, which uses
a relatively simple glue, and serves as a gentle introduction to the general scheme of fine-
grained reductions from OV to sequence comparison problems. It is arguably simpler
than earlier hardness proofs for similar problems. Unfortunately, this approach does not
seem sufficient to generalize the lower bound neither to LCIS nor to the variant of the
problem with more than two sequences.

In order to address this issue, we develop a more involved gadgetry, so called separator
sequences, which let us prove the lower bound in full generality. We show that, unless
SETH fails, for every k > 2 there is no O(nk−ε) time algorithm neither for LCIS nor for
LCWIS on k sequences, for any ε > 0. We also prove that the O(n` log log n + n log n)
time algorithm [31] is optimal, by showing a matching (n`)1−ε lower bound.

2 Extremal combinatorics
Extremal combinatorics investigates the minimal (or maximal) size of structures with
certain properties. It often delivers results of the form: Given a structure of size n
one is guaranteed to always find a substructure of size at least f(n) satisfying certain
property. One of the most famous such results is Ramsey’s theorem, stating that, given
a complete graph on n > R(k, k) vertices, with every edge colored either red or blue, one
can always find either an entirely red complete graph on k = f(n) vertices or an entirely
blue complete graph on n vertices.

For such type of problems, a hardness proof amounts to demonstrating that the guar-
anteed size of a substructure cannot be substantially improved. In this thesis we consider
an extremal-type question for poset dimension, and prove an upper bound on the guar-
anteed size of the largest subposet of a fixed dimension.

11

2.1 Posets, dimension, and an extremal-type question

A partially ordered set (or poset for short) is a set together with a binary relation which is
reflexive, antisymmetric, and transitive. The rich structure of posets make them a popular
subject of study in combinatorics and computer science. Despite many connections and
analogies to the graph theory, the theory of posets seems more complex and, so far, less
understood.

By the kd-grid we mean the poset with the universe {1, 2, . . . , k}d and the natural
product order, i.e. (x1, x2, . . . , xd) 6 (y1, y2, . . . , yd) if xi 6 yi for all i. The dimension
of a finite poset (P,6P) is the least integer d such that P is a subposet of the kd-grid,
for some k ∈ N, i.e. the elements of P can be embedded into the grid with a function
h : P → {1, 2, . . . , k}d such that h(x) 6 h(y) ⇐⇒ x 6P y for all x, y ∈ P . The notion of
poset dimension was introduced in 1941 by Dushnik and Miller [16], and over the years
it proved itself to be an important measure of poset complexity, and, to an extent, an
analogue of the chromatic number of a graph.

The standard example of dimension d, denoted by Sd, is a subposet of the inclusion
order of subsets of {1, 2, . . . , d} consisting of all singletons and their complements. The
poset Sd is considered an analogue of the d-clique. Every poset containing Sd as a subposet
has the dimension at least d. However, standard examples are not the sole reason for
a poset to have a high dimension. Similarly to triangle-free graphs with an arbitrarily
large chromatic number, there are examples of S3-free posets with an arbitrarily large
dimension. Moreover, both d-coloring and deciding whether a poset has dimension (at
most) d are solvable in polynomial time for d = 2 and become NP-complete for every
d > 3.

A chain in a poset is a subset of elements in which every two elements are comparable.
In turn, an antichain is a subset of elements in which no two distinct elements are
comparable. Dilworth’s theorem [13] states that elements of a poset can be partitioned
into a family of w, where w is the size of the largest antichain in this poset. It implies
that every poset on n elements contains a chain or an antichain of size at least

√
n. The

same corollary can also be obtained from an easier dual version of Dilworth’s theorem,
attributed to Mirsky [38]. Note that every chain is a poset of dimension one and every
antichain (on at least two elements) is a poset of dimension two. Thus, every poset on n
elements contains a subposet of dimension (at most) two on

√
n elements. It is natural

to ask if this guarantee can be improved.
Formally, let f(n) be the largest integer such that every poset on n elements has a

subposet on f(n) elements of dimension (at most) two. Clearly, n1/2 6 f(n) 6 n. What
is the asymptotics of f(n)? This natural extremal-type question was posed in 2010 by
François Dorais [14]. The first sublinear upper bound is by Reiniger and Yeager [41], who
proved that f(n) = O(n0.8295). For the proof they analyzed two-dimensional subposets
of lexicographic powers of standard examples S10.

The Dorais’s question gets even more interesting for higher dimensions. Namely, for
d > 2, let fd(n) be the largest integer such that every poset on n elements has a subposet
on fd(n) elements of dimension (at most) d. What is the asymptotics of fd(n)?

Surprisingly, no asymptotically better lower bound than the trivial Ω(n1/2) 6 f2(n) 6
fd(n) is known. It is possible to improve the constant hidden in the Ω notation to

√
d

by using the argument based on Dilworth’s theorem and observing that the union of d

12

largest chains is a poset of dimension at most d. In terms of upper bounds, Reiniger and
Yeager [41] proved that fd(n) = O(ng(d)), where g(d) = minm>d+1 log2m(m + d). The
remaining gap between the lower and upper bounds is frustratingly large.

2.2 Our results

The main idea behind our contribution was our belief that a k2-grid is asymptotically the
largest two-dimensional subposet of the three-dimensional k3-grid. Taking k = n1/3, this
would imply that

f(n) = O(n2/3).

First, we prove the above upper bound with a handcrafted construction, which also uses
grid-based posets, although with a more involved order.

Then, we notice a link between poset dimension and the work of Marcus and Tar-
dos [35] on permutation pattern avoidance and the Stanley-Wilf conjecture. Using a
multidimensional version of the Marcus-Tardos theorem [29, 37], we prove that, for every
d > 2, the kd-grid is asymptotically the largest d-dimensional subposet of the kd+1-grid.
This confirms our initial belief, and implies that

fd(n) = O
(
n

d
d+1

)
.

For dimensions d up to 7 this improves the best known O(ng(d)) upper bound of [41] (see
Table 1). The remaining gap to the Ω(n1/2) lower bound stays frustrating.

d 2 3 4 5 6 7 8 9 10 100

g(d) 0.82948 0.84952 0.86076 0.86823 0.87370 0.87794 0.88136 0.88421 0.88663 0.92122
d
d+1 0.66667 0.75000 0.80000 0.83333 0.85714 0.87500 0.88889 0.90000 0.90909 0.99010

Table 1: Comparison of exponents in the two upper bounds for fd(n)

3 Online algorithms
In many practical settings it is the case that even before the whole input data is known,
already some decisions have to be made. This motivates the study of online problems and
online algorithms, which model such settings. The input to an online problem is split into
a sequence of requests, which are presented to the algorithm one by one. The algorithm
has to produce partial output, related to the currently presented request, immediately,
i.e. without knowing the following requests. Usually the output cannot be changed, or
there is some penalty cost incurred by a later change.

While running time of online algorithms might be a secondary issue – sometimes we
do not even care if the algorithm is polynomial-time – the standard performance measure,
used to analyze online algorithms, is the competitive ratio. Informally, the competitive
ratio is the worst-case ratio of the cost of the solution given by an online algorithm to
the cost of the optimal offline solution (see Section 3.2 for a formal definition).

13

Given a particular optimization problem, we can ask what is the best possible com-
petitive ratio of an online algorithm for this problem. Usually, first we want to know if it
is possible to obtain any constant competitive ratio, independent of the input size. Then,
if the answer is positive, we ask for the smallest possible constant.

There is an analogy between the competitive ratio for online problem and the approx-
imation ratio for NP-hard optimization problems. While the best possible approximation
ratio for a problem is the cost we have to pay to solve the problem in polynomial time,
the competitive ratio is the cost we have to pay to solve the problem online.

3.1 Online graph coloring and interval graphs

In the online graph coloring problem the input graph is presented to the algorithm vertex
by vertex, along with all the edges adjacent to the already presented vertices. Each vertex
must be assigned a color, different than any of its neighbors, immediately and irrevocably
at the moment it is presented, without any knowledge of the remaining part of the graph.
The objective is to minimize the number of colors used. The problem and its variants
attract much attention, both for theoretical properties and practical applications, e.g., in
network multiplexing, resource allocation, or job scheduling.

In the general case, of online coloring of arbitrary graphs there is no hope for any
algorithm with a constant competitive ratio. The best known algorithm [22] uses O(χ ·
n/ log n) colors for n-vertex χ-colorable graphs, i.e. it is O(n/ log n)-competitive, and
there is a lower bound [23] showing that no online graph coloring algorithm can be
o(n/ log2 n)-competitive. It is thus common to study the problem restricted to specific
graph classes.

Having in mind the applications in scheduling, one of the important special cases is
the class of interval graphs, i.e. intersection graphs of intervals on the real line. Interval
graphs have been intensively studied since the sixties [4, 33], and, in particular, they are
known to be perfect, i.e. the chromatic number χ of an interval graph always equals the
size of the largest clique ω (see, e.g., [21]). To construct an optimal coloring offline it
is enough to color the graph greedily in a nondecreasing order of the left ends of the
intervals.

The most basic approach for online graph coloring is the FirstFit algorithm. FirstFit
uses N as the set of colors, and greedily assigns to each vertex the smallest natural number
not previously assigned to any of its neighbors. The exact value of the competitive ratio
of this algorithm for interval graphs is unknown. After a series of papers, the most recent
results state that FirstFit is at least 5- and at most 8-competitive [27, 39]. Kierstead
and Trotter [28] designed a more involved online algorithm, which uses at most 3ω − 2
colors for ω-colorable interval graphs. They also proved a matching lower bound showing
that any algorithm has to use exactly that number of colors. The same lower and upper
bounds were obtained independently by Chrobak and Ślusarek [10, 49].

On the other hand, if we further restrict our attention, to the unit interval graphs,
i.e. intersection graphs of intervals of unit length, FirstFit uses at most 2ω−1 colors [17].
Currently no better algorithm is known. However, Epstein and Levy [17] proved that
every algorithm has to use at least 3

2
ω colors.

14

3.2 Our results

Given the difference in online coloring between interval graphs and unit interval graphs,
we ask, what happens in the intermediate graph classes, i.e. interval graphs with bounded
length representations. The study of these classes was initiated by Fishburn and Gra-
ham [18]. However, they focused mainly on the combinatorial structure, and not its
algorithmic applications. It seems a natural question whether it is possible to beat the 3-
competitive Kierstead-Trotter algorithm [28] when we assume that interval lengths belong
to a fixed range.

We answer this question in the affirmative, by providing an online algorithm which,
given an ω-colorable set of intervals with lengths in [1, σ], colors it using at most (1 +
σ) · ω + O(1/ω) colors. For σ = 1, i.e. unit interval graphs, the algorithm matches the
state-of-the-art performance of FirstFit, and for 1 < σ < 2 it beats the Kierstead-Trotter
algorithm.

Similarly to computational complexity, algorithms can only give only upper bounds
on the hardness of online problem. In order to prove lower bounds, it is often convenient
to look at the problem as a combinatorial game between two players, Algorithm and
Presenter. In our case, in each round Presenter reveals an interval, and Algorithm imme-
diately and irrevocably assigns it a color. While Algorithm tries to minimize the number
of different colors it assigns, the Presenter’s goal is to force Algorithm to use as many
colors as possible. A strategy for Presenter implies a lower bound on the competitive
ratio of any algorithm solving the problem.

Before we proceed with the discussion of the lower bounds we proved, we need a formal
definition of competitive ratio. There are two different commonly used notions: absolute
competitive ratio and asymptotic competitive ratio. Let A be an online graph coloring
algorithm, and let A(χ) denote the maximum number of colors A uses to color any graph
which can be colored offline using χ-colors (i.e. its chromatic number is at most χ).

Definition 6. We say that A has the absolute competitive ratio α, if

∀χ
A(χ)

χ
6 α.

Definition 7. We say that A has the asymptotic competitive ratio α, if

lim sup
χ→∞

A(χ)

χ
6 α.

Kierstead and Trotter [28] give, for every ω ∈ N+, a strategy for Presenter to construct
an ω-colorable set of intervals while forcing Algorithm to use at least 3ω − 2 colors.
However, the length of presented intervals increases with the increasing ω. For this
reason, with the intervals lengths restricted to [1, σ], their lower bound is only for the
absolute competitive ratio and does not exclude, say, an algorithm that always uses at
most 2ω + σ10 colors.

With our lower bound we can rule out the existence of such an algorithm. We show
that for every ε > 0 there is a length σ > 1 such that, for every number of colors ω ∈ N+,
there is a strategy for Presenter to construct an ω-colorable set of intervals with lengths
in [1, σ] while forcing Algorithm to use at least (5/2 − ε) · ω colors. Therefore, there is

15

no algorithm with the asymptotic competitive ratio better than 5/2 that works for all
σ > 1.

Our construction can be considered as a generalization of the 3/2 lower bound for
online coloring of unit interval graphs by Epstein and Levy [17], and it borrows also from
the work of Kierstead and Trotter [28]. However, in order to control the length of intervals
independently of the number of colors, we cannot simply use the pigeonhole principle,
as they did. Instead, we develop two combinatorial lemmas, which let us overcome this
issue, at a cost of a worse bound for the competitive ratio, i.e. 5/2 instead of 3.

We complement the 5/2 lower bound with two lower bounds for small values of σ.
Namely, we show that for every σ > 1 there is no online algorithm with the asymptotic
competitive ratio less than 5/3, and for every σ > 2 there is no online algorithm with the
asymptotic competitive ratio less than 7/4.

4 Bibliography
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time

hardness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends or: A
polylog shaved is a lower bound made. In Proc. 48th Annual ACM Symposium on
Symposium on Theory of Computing (STOC’16), pages 375–388, 2016.

[3] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium
on Theory of Computing (STOC’15), pages 51–58, 2015.

[4] Seymour Benzer. On the topology of the genetic fine structure. Proceedings of the
National Academy of Sciences of the United States of America, 45(11):1607–1620,
1959.

[5] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’14), pages 661–670, 2014.

[6] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 79–97, 2015.

[7] Liming Cai and David Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

[8] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan
Paturi, and Stefan Schneider. Nondeterministic extensions of the strong exponential
time hypothesis and consequences for non-reducibility. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, ITCS ’16, pages
261–270, 2016.

16

[9] Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Effi-
cient algorithms for finding a longest common increasing subsequence. Journal of
Combinatorial Optimization, 13(3):277–288, 2007.

[10] Marek Chrobak and Maciej Ślusarek. On some packing problem related to dynamic
storage allocation. RAIRO, Theoretical Informatics and Applications, 22(4):487–499,
1988.

[11] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[12] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On Prob-
lems Equivalent to (min,+)-Convolution. In 44th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2017), pages 22:1–22:15, 2017.

[13] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51(1):161–166, 1950.

[14] François G. Dorais. Subposets of small Dushnik-Miller dimension. MathOverflow,
2010. http://mathoverflow.net/questions/29169.

[15] Lech Duraj. A linear algorithm for 3-letter longest common weakly increasing sub-
sequence. Information Processing Letters, 113(3):94–99, 2013.

[16] Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathe-
matics, 63(3):600–610, 1941.

[17] Leah Epstein and Meital Levy. Online interval coloring and variants. In ICALP 2005:
32nd International Colloquim on Automata, Languages and Programming, Lisbon,
Portugal, July 2005. Proceedings, volume 3580 of Lecture Notes in Computer Science,
pages 602–613, 2005.

[18] P. C. Fishburn and R. L. Graham. Classes of interval graphs under expanding length
restrictions. Journal of Graph Theory, 9(4):459–472, 1985.

[19] Michael L. Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29–35, 1975.

[20] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computa-
tional geometry. Computational Geometry, 5(3):165–185, 1995.

[21] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals
of Discrete Mathematics, Vol 57). Elsevier, 2 edition, 2004.

[22] Magnús M. Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms,
23(2):265–280, 1997.

[23] Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring.
Theoretical Computer Science, 130(1):163–174, 1994.

17

[24] Yijie Han. Deterministic sorting in o(n log log n) time and linear space. In Proceedings
of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC’02,
pages 602–608, 2002.

[25] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal
of Computer and System Sciences, 62(2):367–375, 2001.

[26] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[27] H.A. Kierstead, David A. Smith, and W.T. Trotter. First-fit coloring on interval
graphs has performance ratio at least 5. European Journal of Combinatorics, 51:236–
254, 2016.

[28] Henry A. Kierstead and William T. Trotter. An extremal problem in recursive
combinatorics. In 12th Southeastern Conference on Combinatorics, Graph Theory
and Computing, Baton Rouge, LA, USA, March 1981. Proceedings, vol. II, volume 33
of Congressus Numerantium, pages 143–153, 1981.

[29] Martin Klazar and Adam Marcus. Extensions of the linear bound in the Füredi-
Hajnal conjecture. Advances in Applied Mathematics, 38(2):258–266, 2007.

[30] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum
conjecture. In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’16, pages 1272–1287, 2016.

[31] Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algo-
rithms for computing longest common increasing subsequences. Journal of Discrete
Algorithms, 9(4):314–325, 2011.

[32] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multi-
plication. Journal of the ACM, 49(1):1–15, 2002.

[33] C. Lekkeikerker and J. Boland. Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae, 51(1):45–64, 1962.

[34] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs
of bounded treewidth are probably optimal. In Proceedings of the Twenty-second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’11, pages 777–789,
2011.

[35] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-
Wilf conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.

[36] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

[37] Abhishek Methuku and Dömötör Pálvölgyi. Forbidden hypermatrices imply general
bounds on induced forbidden subposet problems. Combinatorics, Probability and
Computing, 26(4):593–602, 2017.

18

[38] L. Mirsky. A dual of dilworth’s decomposition theorem. The American Mathematical
Monthly, 78(8):876–877, 1971.

[39] N. S. Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval
graphs. Order, 25(1):49–53, 2008.

[40] Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pages
603–610, 2010.

[41] Benjamin Reiniger and Elyse Yeager. Large subposets with small dimension. Order,
33(1):81–84, 2016.

[42] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for
the diameter and radius of sparse graphs. In Proc. 45th Annual ACM Symposium
on Symposium on Theory of Computing (STOC’13), pages 515–524, 2013.

[43] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science (FOCS’10), pages 645–654, 2010.

[44] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21(1):168–173, 1974.

[45] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science, 348(2):357–365, 2005.

[46] Ryan Williams. Some estimated likelihoods for computational complexity. Lecture
Notes in Computer Science, 10 000, 2018. http://people.csail.mit.edu/rrw/
likelihoods.pdf.

[47] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and
complexity. In Proceedings of International Congress of Mathematicians 2018, To
appear. Available online: http://people.csail.mit.edu/virgi/eccentri.pdf.

[48] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for com-
puting a longest common increasing subsequence. Information Processing Letters,
93(5):249–253, 2005.

[49] Maciej Ślusarek. A coloring algorithm for interval graphs. In Mathematical Founda-
tions of Computer Science (MFCS 1989), pages 471–480, 1989.

19

Information Processing Letters 132 (2018) 1–5

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Why is it hard to beat O (n2) for Longest Common Weakly

Increasing Subsequence?

Adam Polak 1

Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348
Kraków, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 May 2017
Received in revised form 21 November 2017
Accepted 21 November 2017
Available online 2 December 2017
Communicated by Marcin Pilipczuk

Keywords:
Computational complexity
Longest common weakly increasing
subsequence
Lower bound
SETH

The Longest Common Weakly Increasing Subsequence problem (LCWIS) is a variant of the
classic Longest Common Subsequence problem (LCS). Both problems can be solved with
simple quadratic time algorithms. A recent line of research led to a number of matching
conditional lower bounds for LCS and other related problems. However, the status of LCWIS
remained open.
In this paper we show that LCWIS cannot be solved in O (n2−ε) time unless the Strong
Exponential Time Hypothesis (SETH) is false.
The ideas which we developed can also be used to obtain a lower bound based on a safer
assumption of NC-SETH, i.e. a version of SETH which talks about NC circuits instead of less
expressive CNF formulas.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Despite attracting interest of many researches, both
from theoretical computer science and computational bi-
ology communities, for many years the classic Longest
Common Subsequence problem (LCS) has not seen any
significant improvement over the simple O (n2) dynamic
programming algorithm. The current fastest, O (n2/ log2 n)

algorithm by Masek and Paterson [1], dates back to 1980.
Difficulties in making progress on the LCS inspired

studying numerous related problems, among them the
Longest Common Increasing Subsequence problem (LCIS),
for which Yang, Huang, and Chao [2] found a quadratic
time dynamic programming algorithm. Their algorithm
was later improved by Sakai [3] to work in linear space.
Even though both these algorithms are devised to compute
the Longest Common Increasing Subsequence, they can be

E-mail address: polak@tcs.uj.edu.pl.
1 This work was supported by the Polish Ministry of Science and Higher

Education program Diamentowy Grant under grant no. DI2012 018942.

easily modified to compute the Longest Common Weakly
Increasing Subsequence (LCWIS). The latter problem, first
introduced by Kutz et al. [4], can be solved in linear time
in the special case of a 3-letter alphabet, as proposed by
Duraj [5]. However, despite some attempts over the last
decade, no subquadratic time algorithm has been found
for the general case of LCWIS.

A recent line of research led to a number of conditional
lower bounds for polynomial time solvable problems. In
particular Abboud, Backurs, and Vassilevska Williams [6],
and independently Bringmann and Künnemann [7] proved
that LCS cannot be solved in O (n2−ε) time unless the
Strong Exponential Time Hypothesis (SETH) is false.

Hypothesis 1 (Strong Exponential Time Hypothesis). There is no
ε > 0 such that for all k � 3, k-SAT on N variables can be solved
in O (2(1−ε)N) time.

Moreover, Bringmann and Künnemann [7] proposed a
general framework for proving quadratic time hardness of
sequence similarity measures. Within this framework, it is
sufficient to show that a similarity measure admits an align-

https://doi.org/10.1016/j.ipl.2017.11.007
0020-0190/© 2017 Elsevier B.V. All rights reserved.

2 A. Polak / Information Processing Letters 132 (2018) 1–5

ment gadget to prove that this similarity measure cannot
be computed in O (n2−ε) time unless SETH is false. Besides
LCS many other similarity measures, e.g. Edit Distance and
Dynamic Time Warping, fall into this framework. However,
it seems that neither LCIS nor LCWIS admits an alignment
gadget.

In this paper we show that LCWIS cannot be solved in
O (n2−ε) time unless SETH is false.

Theorem 2. If the Longest Common Weakly Increasing Subse-
quence problem for two sequences of length n can be solved in
O (n2−ε) time, then given a CNF formula on N variables and M
clauses it is possible to compute the maximum number of satis-
fiable clauses (MAX-CNF-SAT) in O (2(1−ε/2)N poly(M)) time.

Our reduction is modeled after previous hardness re-
sults based on SETH, in particular [6] and [8]. We go
through the Most-Orthogonal Vectors problem, and con-
struct vector gadgets such that two vector gadgets have
large LCWIS if and only if the corresponding vectors have
small inner product. The crucial ingredient, presented in
Lemma 9, is a construction that lets us combine many
vector gadgets into two sequences such that their LCWIS
depends on the largest LCWIS among all pairs of vector
gadgets.

Unfortunately, our uncomplicated techniques are not
sufficient to prove similar lower bounds neither for LCIS
nor for the generalization of LCWIS to more than two se-
quences. Recently, a more involved construction has been
proposed to establish tight lower bounds for both these
problems [9].

Unlike P �= NP and several other common assumptions
for conditional lower bounds in computational complex-
ity, SETH is considered by many not a very safe working
hypothesis. Recently, Abboud et al. [10] came up with a
weaker assumption, which still allows to prove many pre-
vious SETH-based lower bounds. More specifically, they
propose a reduction from satisfiability of Branching Pro-
grams [11] (BP-SAT) to LCS (and, in general, any other
similarity measure which admits an alignment gadget).
Their reduction implies that the existence of a strongly
subquadratic time algorithm for LCS would have much
more remarkable consequences in computational complex-
ity than just refuting SETH, e.g. an exponential improve-
ment over brute-force algorithm for satisfiability of NC
circuits. For an in-depth discussion of consequences of
their reduction and motivations to study such reductions
please refer to the original paper [10]. Their main develop-
ment, which makes the reduction possible, is the construc-
tion of reachability gadgets, which encode computations of
Branching Programs in the language of LCS and play a role
analogous to vector gadgets in previous reductions from
CNF-SAT via Orthogonal Vectors problem. It is easy to de-
vise similar reachability gadgets for LCWIS, by adapting
the original construction. Then, our Lemma 9 can be ap-
plied to these reachability gadgets to obtain a reduction
from BP-SAT to LCWIS, giving even stronger evidence of
the quadratic time hardness of LCWIS.

2. Preliminaries

Let us start with the formal definition of the LCWIS
problem.

Definition 3 (Longest Common Weakly Increasing Subse-
quence). Given two sequences A and B over an alphabet � with
a linear order �� , the Longest Common Weakly Increasing
Subsequence problem asks to find a sequence C such that

• it is weakly increasing with respect to �� ,
• it is a subsequence of both A and B,
• and its length is maximum possible.

We denote the length of C by LCWIS(A, B).

For example, LCWIS(〈1, 2, 5, 2, 5, 3〉, 〈2, 4, 5, 2, 3, 4〉) = 3,
and the optimal subsequence is 〈2, 2, 3〉.

To simplify further arguments we introduce, as an aux-
iliary problem, the weighted version of LCWIS.

Definition 4 (Weighted Longest Common Weakly Increasing
Subsequence). Given two sequences A and B over an alphabet �
with a linear order �� and the weight function w : � −→ N+ ,
the Weighted Longest Common Weakly Increasing Subse-
quence problem (WLCWIS) asks to find a sequence C such that

• it is weakly increasing with respect to ��,
• it is a subsequence of both A and B,
• and its total weight, i.e.

∑|C |
i=1 w(Ci), is maximum possible.

We denote the total weight of C by WLCWIS(A, B).

Lemma 5. Computing the WLCWIS of two sequences, each of
total weight at most W , can be reduced to computing the LCWIS
of two sequences, each of length at most W .

Proof. For a sequence X = 〈X1, X2, . . . , X|X |〉 let X̂ denote
a sequence obtained from X by replacing each symbol a
by its w(a) many copies, i.e.

X̂ = X w(X1)
1 X w(X2)

2 . . . X
w(X|X|)
|X | .

We will show that WLCWIS(A, B) = LCWIS(Â, ̂B). Ev-
ery common weakly increasing subsequence C of A and B
translates to a common weakly increasing subsequence Ĉ
of Â and B̂ , and the length of Ĉ equals the total weight
of C , thus WLCWIS(A, B) � LCWIS(Â, ̂B).

It remains to prove WLCWIS(A, B) � LCWIS(Â, ̂B). Let
� = {σ1, σ2, . . . , σ|�|}, σi <� σi+1. Let us represent the
longest common weakly increasing subsequence of Â and
B̂ as σα1

1 σ
α2
2 . . . σ

α|�|
|�| . Note that such a representation is

possible because the subsequence is weakly increasing. Let

C := σ
�α1/w(σ1)�
1 σ

�α2/w(σ2)�
2 . . . σ

⌈
α|�|/w(σ|�|)

⌉
|�| .

Note that the total weight of C with respect to w is at least
LCWIS(Â, ̂B). To finish the proof observe that C is a subse-
quence of both A and B . Indeed, C is a subsequence of A
because, for each i, αi occurrences of σi in Â must origi-
nate from at least �αi/w(σi)� different occurrences of σi in

A. Polak / Information Processing Letters 132 (2018) 1–5 3

A and all this occurrences must come after all correspond-
ing occurrences of σ j for j < i and before all corresponding
occurrences of σ j for j > i. The same argument can be ap-
plied to show that C is a subsequence of B . �
3. Reduction from MAX-CNF-SAT to LCWIS

This section is devoted to proving Theorem 2. We do
this by showing a reduction from the Most-Orthogonal
Vectors problem, introduced by Abboud, Backurs, and Vas-
silevska Williams [6].

Definition 6 (Most-Orthogonal Vectors). Given two sets of vec-
tors U , V ⊆ {0, 1}d, both of the same size n, and an inte-
ger r ∈ {0, 1, . . . , d}, are there two vectors u ∈ U and v ∈ V
such that their inner product does not exceed r, i.e. u · v :=∑d

i=1 ui · vi � r?

Lemma 7 (Abboud, Backurs, Vassilevska Williams [6]). If Most-
Orthogonal Vectors on n vectors in {0, 1}d can be solved in
T (n, d) time, then given a C N F formula on N variables and
M clauses, we can compute the maximum number of satisfiable
clauses (MAX-CNF-SAT), in O (T (2N/2, M) · log M) time.

First, we show how to encode vectors into sequences,
called vector gadgets, such that two vector gadgets have
large LCWIS if and only if the corresponding vectors have
small inner product. For the encoding we use alphabet �
consisting of the integers from 3 to 3d + 2.

Lemma 8. There exist VG1, VG2 : {0, 1}d −→ �∗ , both com-
putable in O (d) time, such that for any two vectors u, v ∈
{0, 1}d

LC W I S(VG1(u),VG2(v)) = d − (u · v).

Moreover, the lengths of VG1(u) and VG2(v) do not exceed 2d.

Proof. First we define two kinds of coordinate gadgets:
CG1, CG2 : {0, 1} × {1, 2, . . . , d} −→ �∗ .

CG1(0, i) = 〈3i,3i + 1〉
CG1(1, i) = 〈3i + 2〉
CG2(0, i) = 〈3i,3i + 2〉
CG2(1, i) = 〈3i + 1〉
Observe that

LC W I S(CG1(x, i),CG2(y, i)) =
{

0, if x = 1 and y = 1,

1, otherwise.

Now we are ready to define the vector gadgets:

VG1(u1, u2, . . . , ud) =
= CG1(u1,1) CG1(u2,2) . . . CG1(ud,d)

VG2(u1, u2, . . . , ud) =
= CG2(u1,1) CG2(u2,2) . . . CG2(ud,d)

Observe that, for u = (u1, u2, . . . , ud), v = (v1, v2, . . . , vd) ∈
{0, 1}d ,

LC W I S(VG1(u),VG2(v)) =

=
d∑

i=1

LC W I S(CG1(ui, i),CG2(vi, i)) =

=
d∑

i=1

(1 − ui · vi) = d − (u · v),

as desired. �
The next lemma helps us combine many vector gadgets

into two sequences such that computing their LCWIS lets
us find two vector gadgets with the largest LCWIS, which
correspond to the pair of most orthogonal vectors.

Lemma 9. Given two sets of sequences S = {s1, s2, . . . , sn} ⊆
�∗ , T = {t1, t2, . . . , tn} ⊆ �∗ , each sequence of length at
most �, one can construct, in O (n�) time, two sequences such
that the length of their LCWIS equals

max
1�i, j�n

LCWIS(si, t j) + (4n − 2) · �.

The length of the constructed sequences is O (n�), and they are
defined over an alphabet of size |�| + O (1).

Proof. In order to simplify the proof we go through WL-
CWIS problem. We put weight 1 for every symbol orig-
inally in �, and augment the alphabet with four addi-
tional symbols A, B, Y, Z, such that A < B < σ < Y < Z
for all σ ∈ �. Let the weights of the new symbols be
w(A) = w(Z) = � and w(B) = w(Y) = 2�. Finally, define
two sequences P1 and P2,

P1 = A2n s1 YB s2 YB . . . YB sn Z2n,

P2 = (ZYBA)n t1 ZYBA t2 ZYBA . . . ZYBA tn (ZYBA)n.

Observe that the total weight of P1 and P2 is O (n�). After
we prove that

WLCWIS(P1, P2) = max
1�i, j�n

LCWIS(si, t j) + (4n − 2) · �,

it will remain to apply Lemma 5 to obtain the desired se-
quences.

The proof consists of two parts, first we prove that
a common weakly increasing subsequence of P1 and P2
with the claimed total weight exists, then we prove that
there is no such subsequence with a larger total weight.

Take i and j maximizing WLCWIS(si, t j), denote by Q
the corresponding subsequence of si and t j , and consider
the following sequence:

Q ′ = An+ j−1−(i−1) Bi−1 Q Yn−i Z2n− j−(n−i).

The construction of Q ′ is motivated by the following intu-
ition. We start with Q , and append at the beginning one
B for each YB-fragment appearing before si in P1. There

4 A. Polak / Information Processing Letters 132 (2018) 1–5

are i − 1 such fragments. On the other hand, the num-
ber of ZYBA-fragments appearing before t j in P2 equals
n + j −1. We devote the rightmost i −1 of these fragments
to find matching B symbols, and for each of the remaining
fragments we take one A and append it at the beginning
of Q ′ . The A2n prefix of P1 is long enough to match all
these A symbols. In an analogous way we append Y and Z
elements at the end of Q ′ .

Note that Q ′ is weakly increasing and it appears in
both P1 and P2 as a subsequence. The total weight of Q ′
equals

�(n + j − 1 − (i − 1)) + 2�(i − 1) + WLCWIS(si, t j) +
+ 2�(n − i) + �(2n − j − (n − i)) =

= � · 2n + 2� · (n − 1) + WLCWIS(si, t j) =
= WLCWIS(si, t j) + (4n − 2) · �.

This finishes the first part of the proof.
Now we prove that there is no common weakly increas-

ing subsequence of P1 and P2 with a larger total weight.
Consider any such subsequence. Denote by cS the number
of si-fragments in P1 that contribute at least one symbol
to that subsequence. Analogously, denote by cT the num-
ber of t j-fragments in P2 contributing at least one symbol.
Finally, denote by cA, cB, cY, cZ the number of symbols A,
B, Y, Z in the subsequence, respectively. Observe that the
contribution of A, B, Y, Z symbols to the total weight of
the subsequence is

cA · w(A) + cB · w(B) + cY · w(Y) + cZ · w(Z) =
= cA · � + cB · 2� + cY · 2� + cZ · � =
= (cA + cB + cY + cZ) · � + (cB + cY) · �. (1)

Now the proof splits into two cases:

Case 1: cS � 1 and cT � 1. The contribution of si - and
t j-fragments to the total weight of the subsequence is at
most max1�i, j�n WLCWIS(si, t j). The remaining weight of
the subsequence must come from the symbols A, B, Y, Z.
Each ZYBA-fragment in P2 can contribute at most one
symbol to the, weakly increasing, subsequence. There are
3n − 1 such fragments, therefore

cA + cB + cY + cZ � 3n − 1.

Similarly, each YB-fragment in P1 can contribute at most
one symbol. There are n − 1 such fragments in P2, there-
fore

cB + cY � n − 1.

Combining these two inequalities with the equation (1) we
get that the contribution of A, B, Y, Z symbols to the to-
tal weight of the subsequence is at most (3n − 1) · � +
(n − 1) · � = (4n − 2) · �. This together with the contribution
of the si - and t j-fragments gives the required upper bound
for WLCWIS(P1, P2).

Case 2: cS � 2 or cT � 2. The contribution of si - and
t j-fragments to the total weight of the subsequence is

at most min(cS , cT) · �. Since min(cS , cT) = cS + cT −
max(cS , cT) and at least one of cS , cT is at least 2, we can
bound min(cS , cT) from above by cS + cT − 2. Thus the
considered contribution is at most

((cS − 1) + (cT − 1)) · �.
If two si -fragments contribute at least one symbol each,
no YB-fragment between them can contribute, because the
subsequence has to be weakly increasing. Therefore, the
number of YB-fragments contributing is at most n − 1 −
(cS − 1), thus

cB + cY � n − 1 − (cS − 1).

Similarly

cA + cB + cY + cZ � 3n − 1 − (cT − 1).

Using the equation (1) we get that the total weight of the
subsequence is at most

((cS − 1) + (cT − 1)) · � +
+ (3n − 1 − (cT − 1)) · � + (n − 1 − (cS − 1)) · �,

which is (4n − 2) · �. �
Now we are ready to complete our reduction from

Most-Orthogonal Vectors to LCWIS.

Lemma 10. If LCWIS of two sequences of length n can be com-
puted in O (n2−ε) time, then Most-Orthogonal Vectors for n vec-
tors in {0, 1}d can be solved in O ((dn)2−ε) time.

Proof. Given two sets of vectors U , V ⊆ {0, 1}d , both of
size n, we use Lemma 8 to construct two sets of vector
gadgets S = V G1(U), T = V G2(V) ⊆ �∗ , such that

max
s∈S, t∈T

LCWIS(s, t) = d − min
u∈U , v∈V

(u · v).

Each of the two sets S, T contains n vector gadgets of
length at most 2d. Now we apply Lemma 9 to these sets
and construct two sequences, of length O (dn), such that
their LCWIS equals

max
s∈S, t∈T

LCWIS(s, t) + (4n − 2) · 2d

= (4n − 2) · 2d + d − min
u∈U , v∈V

(u · v).

All the constructions so far can be done in linear time.
Finally, we execute the hypothesized subquadratic LCWIS
algorithm, which takes O ((dn)2−ε) time and lets us de-
termine the inner product of the pair of most orthogonal
vectors. �
Proof of Theorem 2. This theorem is a direct conclusion
from Lemma 7 and Lemma 10. �

A. Polak / Information Processing Letters 132 (2018) 1–5 5

4. Open problems

The reduction which we give in this paper does not
work with a constant size alphabet. In the case of LCS it is
possible to obtain conditional quadratic time lower bounds
even for binary strings [7]. It is very unlikely to obtain sim-
ilar results for LCWIS given the linear time algorithm for
the 3-letter alphabet [5]. However, it is an open problem
to show quadratic time hardness of LCWIS for an alphabet
of some larger constant size.

References

[1] W. Masek, M. Paterson, A faster algorithm computing string edit dis-
tances, J. Comput. Syst. Sci. 20 (1980) 18–31, https://doi.org/10.1016/
0022-0000(80)90002-1.

[2] I.-H. Yang, C.-P. Huang, K.-M. Chao, A fast algorithm for computing
a longest common increasing subsequence, Inf. Process. Lett. 93 (5)
(2005) 249–253, https://doi.org/10.1016/j.ipl.2004.10.014.

[3] Y. Sakai, A linear space algorithm for computing a longest common
increasing subsequence, Inf. Process. Lett. 99 (5) (2006) 203–207,
https://doi.org/10.1016/j.ipl.2006.05.005.

[4] M. Kutz, G.S. Brodal, K. Kaligosi, I. Katriel, Faster algorithms for
computing longest common increasing subsequences, J. Discret. Al-
gorithms 9 (4) (2011) 314–325, https://doi.org/10.1016/j.jda.2011.
03.013, selected papers from the 17th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2006).

[5] L. Duraj, A linear algorithm for 3-letter longest common weakly
increasing subsequence, Inf. Process. Lett. 113 (3) (2013) 94–99,
https://doi.org/10.1016/j.ipl.2012.11.007.

[6] A. Abboud, A. Backurs, V.V. Williams, Tight hardness results for LCS
and other sequence similarity measures, in: Proceedings of the 2015
IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS), FOCS ’15, 2015, pp. 59–78.

[7] K. Bringmann, M. Künnemann, Quadratic conditional lower bounds
for string problems and dynamic time warping, in: Proceedings of
the 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), FOCS ’15, 2015, pp. 79–97.

[8] A. Backurs, P. Indyk, Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false), in: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC
’15, 2015, pp. 51–58.

[9] L. Duraj, M. Künnemann, A. Polak, Tight conditional lower bounds
for longest common increasing subsequence, in: 12th International
Symposium on Parameterized and Exact Computation (IPEC 2017),
Leibniz International Proceedings in Informatics (LIPIcs), 2017.

[10] A. Abboud, T.D. Hansen, V.V. Williams, R. Williams, Simulating
branching programs with edit distance and friends: or: a polylog
shaved is a lower bound made, in: Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC ’16, 2016,
pp. 375–388.

[11] S. Arora, B. Barak, Computational Complexity: A Modern Approach,
1st edition, Cambridge University Press, New York, NY, USA, 2009.

Tight Conditional Lower Bounds for Longest
Common Increasing Subsequence∗

Lech Duraj†1, Marvin Künnemann2, and Adam Polak‡3

1 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
duraj@tcs.uj.edu.pl

2 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
marvin@mpi-inf.mpg.de

3 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
polak@tcs.uj.edu.pl

Abstract
We consider the canonical generalization of the well-studied Longest Increasing Subsequence
problem to multiple sequences, called k-LCIS: Given k integer sequences X1, . . . , Xk of length at
most n, the task is to determine the length of the longest common subsequence of X1, . . . , Xk

that is also strictly increasing. Especially for the case of k = 2 (called LCIS for short), several
algorithms have been proposed that require quadratic time in the worst case.

Assuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound,
specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the
proof makes no use of normalization tricks common to hardness proofs for similar problems such
as LCS. We further strengthen this lower bound to rule out O

(
(nL)1−ε) time algorithms for

LCIS, where L denotes the solution size, and to rule out O
(
nk−ε

)
time algorithms for k-LCIS.

We obtain the same conditional lower bounds for the related Longest Common Weakly Increasing
Subsequence problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases fine-grained complexity, combinatorial pattern matching, sequence align-
ments, parameterized complexity, SETH

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.15

1 Introduction

The longest common subsequence problem (LCS) and its variants are computational primitives
with a variety of applications, which includes, e.g., uses as similarity measures for spelling
correction [36, 42] or DNA sequence comparison [38, 5], as well as determining the differences
of text files as in the UNIX diff utility [27]. LCS shares characteristics of both an easy and
a hard problem: (Easy) A simple and elegant dynamic-programming algorithm computes an
LCS of two length-n sequences in time O

(
n2) [42], and in many practical settings, certain

properties of typical input sequences can be exploited to obtain faster, “tailored” solutions

∗ The full version of this paper is available at: http://arxiv.org/abs/1709.10075.
† Partially supported by Polish National Science Center grant 2016/21/B/ST6/02165.
‡ Partially supported by Polish Ministry of Science and Higher Education program Diamentowy Grant.

© Lech Duraj, Marvin Künnemann, and Adam Polak;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

15:2 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

(e.g., [26, 28, 7, 37]; see also [13] for a survey). (Hard) At the same time, no polynomial
improvements over the classical solution are known, thus exact computation may become
infeasible for very long general input sequences. The research community has sought for a
resolution of the question “Do subquadratic algorithms for LCS exist?” already shortly after
the formalization of the problem [20, 4].

Recently, an answer conditional on the Strong Exponential Time Hypothesis (SETH;
see Section 2 for a definition) could be obtained: Based on a line of research relating the
satisfiability problem to quadratic-time problems [43, 40, 14, 3] and following a breakthrough
result for Edit Distance [9], it has been shown that unless SETH fails, there is no (strongly)
subquadratic-time algorithm for LCS [1, 15]. Subsequent work [2] strengthens these lower
bounds to hold already under weaker assumptions and even provides surprising consequences
of sufficiently strong polylogarithmic improvements.

Due to its popularity and wide range of applications, several variants of LCS have been
proposed. This includes the heaviest common subsequence (HCS) [31], which introduces
weights to the problem, as well as notions that constrain the structure of the solution,
such as the longest common increasing subsequence (LCIS) [45], LCSk [12], constrained
LCS [41, 19, 8], restricted LCS [25], and many other variants (see, e.g., [18, 6, 32]). Most
of these variants are (at least loosely) motivated by biological sequence comparison tasks.
To the best of our knowledge, in the above list, LCIS is the only LCS variant for which (1)
the best known algorithms run in quadratic time in the worst case and (2) its definition
does not include LCS as a special case (for such generalizations of LCS, the quadratic-time
SETH hardness of LCS [1, 15] would transfer immediately). As such, it is open to determine
whether there are (strongly) subquadratic algorithms for LCIS or whether such algorithms
can be ruled out under SETH. The starting point of our work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)
The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is defined
as follows: Given integer sequences X1, . . . , Xk of length at most n, determine the length
of the longest sequence Z such that Z is a strictly increasing sequence of integers and
Z is a subsequence of each Xi, i ∈ {1, . . . , k}. For k = 1, we obtain the well-studied
longest increasing subsequence problem (LIS; we refer to [21] for an overview), which has
an O (n logn) time solution and a matching lower bound in the decision tree model [24].
The extension to k = 2, denoted simply as LCIS, has been proposed by Yang, Huang, and
Chao [45], partially motivated as a generalization of LIS and by potential applications in
bioinformatics. They obtained an O

(
n2) time algorithm, leaving open the natural question

whether there exists a way to extend the near-linear time solution for LIS to a near-linear
time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a recent
conditional lower bound of Abboud, Backurs and Vassilevska Williams [1] yields a partial
negative answer assuming SETH.
I Observation 1 (Folklore reduction, implicit in [28], explicit in [31]). After O

(
kn2) time

preprocessing, we can solve k-LCS by a single call to (k − 1)-LCIS on sequences of length at
most n2.
Note that by the above reduction, an O

(
n

3
2−ε
)
time LCIS algorithm would give an O

(
n3−2ε)

time algorithm for 3-LCS, which would refute SETH by a result of Abboud et al. [1].

I Corollary 2. Unless SETH fails, there is no O
(
n

3
2−ε
)
time algorithm for LCIS for any

constant ε > 0.

L. Duraj, M. Künnemann, and A. Polak 15:3

While this rules out near-linear time algorithms, still an unsatisfying large polynomial gap
between best upper and conditional lower bounds persists.

1.2 Our Results
Our first result is a tight SETH-based lower bound for LCIS.

I Theorem 3. Unless SETH fails, there is no O
(
n2−ε) time algorithm for LCIS for any

constant ε > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size
Subsequent work [17, 34] improved over Yang et al.’s algorithm when certain input parameters
are small. Here, we focus particularly on the solution size, i.e., the length L of the LCIS.
Kutz et al. [34] provided an algorithm running in time O (nL log logn+ n logn). If L is small
compared to its worst-case upper bound of n, say L = n

1
2±o(1), this algorithm runs in strongly

subquadratic time. Interestingly, exactly for this case, the reduction from 3-LCS to LCIS of
Observation 1 already yields a matching SETH-based lower bound of (Ln)1−o(1) = n

3
2−o(1).

However, for smaller L, this reduction yields no lower bound at all and only a non-matching
lower bound for larger L. We remedy this situation by the following result.1

I Theorem 4. Unless SETH fails, there is no O
(
(nL)1−ε) time algorithm for LCIS for any

constant ε > 0. This even holds restricted to instances with L = nγ±o(1), for arbitrarily
chosen 0 < γ 6 1.

1.2.2 Parameterized Complexity II: k-LCIS
For constant k > 3, we can solve k-LCIS in O

(
nkpolylog(n)

)
time [17, 34], or even O

(
nk
)

time (see the appendix in the full version). While it is known that k-LCS cannot be computed
in time O

(
nk−ε

)
for any constant ε > 0, k > 2 unless SETH fails [1], this does not directly

transfer to k-LCIS, since the reduction in Observation 1 is not tight. However, by extending
our main construction, we can prove the analogous result.

I Theorem 5. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCIS for any

constant k > 3 and ε > 0.

1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)
We consider a closely related variant of LCIS called the Longest Common Weakly Increasing
Subsequence (k-LCWIS): Here, given integer sequences X1, . . . , Xk of length at most n, the
task is to determine the longest weakly increasing (i.e. non-decreasing) integer sequence
Z that is a common subsequence of X1, . . . , Xk. Again, we write LCWIS as a shorthand
for 2-LCWIS. Note that the seemingly small change in the notion of increasing sequence
has a major impact on algorithmic and hardness results: Any instance of LCIS in which
the input sequences are defined over a small-sized alphabet Σ ⊆ Z, say |Σ| = O

(
n1/2),

can be solved in strongly subquadratic time O (nL logn) = O
(
n3/2 logn

)
[34], by using the

fact that L 6 |Σ|. In contrast, LCWIS is quadratic-time SETH hard already over slightly

1 We mention in passing that a systematic study of the complexity of LCS in terms of such input
parameters has been performed recently in [16].

IPEC 2017

15:4 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

superlogarithmic-sized alphabets [39]. We give a substantially different proof for this fact
and generalize it to k-LCWIS.

I Theorem 6. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCWIS for any

constant k > 3 and ε > 0. This even holds restricted to instances defined over an alphabet of
size |Σ| 6 f(n) logn for any function f(n) = ω(1) growing arbitrarily slowly.

1.3 Discussion, Outline and Technical Contributions
Apart from an interest in LCIS and its close connection to LCS, our work is also motivated
by an interest in the optimality of dynamic programming (DP) algorithms2. Notably, many
conditional lower bounds in P target problems with natural DP algorithms that are proven
to be near-optimal under some plausible assumption (see, e.g., [14, 3, 9, 10, 1, 15, 11, 22, 33]
and [44] for an introduction to the field). Even if we restrict our attention to problems
that find optimal sequence alignments under some restrictions, such as LCS, Edit Distance
and LCIS, the currently known hardness proofs differ significantly, despite seemingly small
differences between the problem definitions. Ideally, we would like to classify the properties
of a DP formulation which allow for matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [15]. Exploiting
normalization tricks, this framework gives an abstract property of sequence similarity measures
to allow for SETH-based quadratic lower bounds. Unfortunately, as it turns out, we cannot
directly transfer the alignment gadget hardness proof for LCS to LCIS – some indication for
this difficulty is already given by the fact that LCIS can be solved in strongly subquadratic
time over sublinear-sized alphabets [34], while the LCS hardness proof already applies
to binary alphabets. By collecting gadgetry needed to overcome such difficulties (that
we elaborate on below), we hope to provide further tools to generalize more and more
quadratic-time lower bounds based on SETH.

1.3.1 Technical Challenges
The known conditional lower bounds for global alignment problems such as LCS and
Edit Distance work as follows. The reductions start from the quadratic-time SETH-hard
Orthogonal Vectors problem (OV), that asks to determine, given two sets of (0, 1)-vectors
U = {u0, . . . , un−1},V = {v0, . . . , vn−1} ⊆ {0, 1}d over d = no(1) dimensions, whether there
is a pair i, j such that ui and vj are orthogonal, i.e., whose inner product (ui · vj) :=∑d−1
k=0 ui[k] · vj [k] is 0 (over the integers). Each vector ui and vj is represented by a

(normalized) vector gadget VGx(ui) and VGy(vj), respectively. Roughly speaking, these
gadgets are combined to sequences X and Y such that each candidate for an optimal
alignment of X and Y involves locally optimal alignments between n pairs VGx(ui),VGy(vj)
– the optimal alignment exceeds a certain threshold if and only if there is an orthogonal pair
ui, vj .

An analogous approach does not work for LCIS: Let VGx(ui) be defined over an alphabet
Σ and VGx(ui′) over an alphabet Σ′. If Σ and Σ′ overlap, then VGx(ui) and VGx(ui′) cannot
both be aligned in an optimal alignment without interference with each other. On the other
hand, if Σ and Σ′ are disjoint, then each vector vj should have its corresponding vector
gadget V Gy(vj) defined over both Σ and Σ′ to enable to align VGx(ui) with VGy(vj) as well
as VGx(ui′) with VGy(vj). The latter option drastically increases the size of vector gadgets.

2 We refer to [46] for a simple quadratic-time DP formulation for LCIS.

L. Duraj, M. Künnemann, and A. Polak 15:5

Thus, we must define all vector gadgets over a common alphabet Σ and make sure that only
a single pair VGx(ui),VGy(vj) is aligned in an optimal alignment (in contrast with n pairs
aligned in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline
Fortunately, a surprisingly simple approach works: As a key tool, we provide separator
sequences α0 . . . αn−1 and β0 . . . βn−1 with the following properties: (1) for every i, j ∈
{0, . . . , n− 1} the LCIS of α0 . . . αi and β0 . . . βj has a length of f(i+ j), where f is a linear
function, and (2)

∑
i |αi| and

∑
j |βj | are bounded by n1+o(1). Note that existence of such a

gadget is somewhat unintuitive: condition (1) for i = 0 and j = n− 1 requires |α0| = Ω(n),
yet still the total length

∑
i |αi| must not exceed the length of |α0| significantly. Indeed, we

achieve this by a careful inductive construction that generates such sequences with heavily
varying block sizes |αi| and |βj |.

We apply these separator sequences as follows. We first define simple vector gadgets
VGx(ui),VGy(vj) over an alphabet Σ such that the length of an LCIS of VGx(ui) and
VGy(vj) is d− (ui ·vj). Then we construct the separator sequences as above over an alphabet
Σ< whose elements are strictly smaller than all elements in Σ. Furthermore, we create
analogous separator sequences α′0 . . . α′n−1 and β′0 . . . β′n−1 which satisfy a property like (1)
for all suffixes instead of prefixes, using an alphabet Σ> whose elements are strictly larger
than all elements in Σ. Now, we define

X = α0VGx(u0)α′0 . . . αn−1VGx(un−1)α′n−1,

Y = β0VGy(v0)β′0 . . . βn−1VGy(vn−1)β′n−1.

As we will show in Section 3, the length of an LCIS of X and Y is C −mini,j(ui · vj) for
some constant C depending only on n and d.

In contrast to previous such OV-based lower bounds, we use heavily varying separators
(paddings) between vector gadgets.

1.4 Paper organization
After setting up conventions and introducing our hardness assumptions in Section 2, we give
the main construction, i.e., the hardness of LCIS in Section 3. The proofs of Theorems 4, 5
and 6 can be found in the full version. We conclude with some open problems in Section 4.

2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let X,Y be
integer sequences. We write |X| for the length of X, X[k] for the k-th element in the sequence
X (k ∈ {0, . . . , |X| − 1}), and X ◦ Y = XY for the concatenation of X and Y . We say that
Y is a subsequence of X if there exist indices 0 6 i1 < i2 < · · · < i|Y | 6 |X| − 1 such that
X[ik] = Y [k] for all k ∈ {0, . . . , |Y | − 1}. Given any number of sequences X1, . . . , Xk, we say
that Y is a common subsequence of X1, . . . , Xk if Y is a subsequence of each Xi, i ∈ {1, . . . , k}.
X is called strictly increasing (or weakly increasing) if X[0] < X[1] < · · · < X[|X| − 1]
(or X[0] 6 X[1] 6 · · · 6 X[|X| − 1]). For any k sequences X1, . . . , Xk, we denote by
lcis(X1, . . . , Xk) the length of their longest common subsequence that is strictly increasing.

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis (SETH),
introduced by Impagliazzo and Paturi [29, 30]. It essentially states that no exponential
speed-up over exhaustive search is possible for the CNF satisfiability problem.

IPEC 2017

15:6 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Hypothesis 7 (Strong Exponential Time Hypothesis (SETH)). There is no ε > 0 such that
for all d > 3 there is an O

(
2(1−ε)n) time algorithm for d-SAT.

This hypothesis implies tight hardness of the k-Orthogonal Vectors problem (k-OV),
which will be the starting point of our reductions: Given k sets U1, . . . ,Uk ⊆ {0, 1}d, each
with |Ui| = n vectors over d = no(1) dimensions, determine whether there is a k-tuple
(u1, . . . , uk) ∈ U1 × · · · × Uk such that

∑d−1
`=0

∏k
i=1 ui[`] = 0. By exhaustive enumeration, it

can be solved in time O
(
nkd

)
= nk+o(1). The following conjecture is implied by SETH by

the well-known split-and-list technique of Williams [43] (and the sparsification lemma [30]).

I Hypothesis 8 (k-OV conjecture). Let k > 2. There is no O
(
nk−ε

)
time algorithm for

k-OV, with d = ω(logn), for any constant ε > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the following
weaker conjecture.

I Hypothesis 9 (OV conjecture). There is no O
(
n2−ε) time algorithm for OV, with d =

ω(logn), for any constant ε > 0. Equivalently, even restricted to instances with |U1| = n and
|U2| = nγ , 0 < γ 6 1, there is no O

(
n1+γ−ε) time algorithm for OV, with d = ω(logn), for

any constant ε > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes can
be found, e.g., in [15].

3 Main Construction: Hardness of LCIS

In this section, we prove quadratic-time SETH hardness of LCIS, i.e., prove Theorem 3. We
first introduce an inflation operation, which we then use to construct our separator sequences.
After defining simple vector gadgets, we show how to embed an Orthogonal Vectors instance
using our vector gadgets and separator sequences.

3.1 Inflation
We begin by introducing the inflation operation, which simulates weighing the sequences.

I Definition 10. For a sequence A = 〈a0, a1, . . . , an−1〉 of integers we define:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an−1 − 1, 2an−1〉 .

I Lemma 11. For any two sequences A and B, lcis(inflate(A), inflate(B)) = 2 · lcis(A,B).

Proof. Let C be the longest common increasing subsequence of A and B. Observe that
inflate(C) is a common increasing subsequence of inflate(A) and inflate(B) of length 2 · |C|,
thus lcis(inflate(A), inflate(B)) > 2 · lcis(A,B).

Conversely, let Ā denote inflate(A) and B̄ denote inflate(B). Let C̄ be the longest
common increasing subsequence of Ā and B̄. If we divide all elements of C̄ by 2 and
round up to the closest integer, we end up with a weakly increasing sequence. Now, if
we remove duplicate elements to make this sequence strictly increasing, we obtain C, a
common increasing subsequence of A and B. At most 2 distinct elements may become equal
after division by 2 and rounding, therefore C contains at least

⌈
lcis(Ā, B̄)/2

⌉
elements, so

2 · lcis(A,B) > lcis(Ā, B̄). This completes the proof. J

L. Duraj, M. Künnemann, and A. Polak 15:7

1 2 3 4 5 6 11 12 7 8 9 1011 13 11 1211 13

tail gadget︷ ︸︸ ︷inflate(α0
1)︷ ︸︸ ︷

1 2

α0
1

3 4 5

α1
1

inflate(α1
1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
2 α1

2 α2
2 α3

2

1

inflate(α0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
0

A1

A2

A0

1

β0
0

B0 1 2

β0
1

4 3 5

β1
1

inflate(β0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

B1

1 2 3 4 7 8 11 11 5 6 9 1012 13 11 1112 13

tail gadget︷ ︸︸ ︷inflate(β0
1)︷ ︸︸ ︷ inflate(β1

1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷
β0

2 β1
2 β2

2 β3
2

B2

x x+ 2
x+ 1

x+ 1

· · · 2sk + 2 2sk + 1 2sk + 3

· · · 2sk + 1 2sk + 2 2sk + 3︸ ︷︷ ︸
β

2j+1
k+1

Ak+1

Bk+1

lcis

︸ ︷︷ ︸
β

2j
k+1

α2i+1
k+1︷ ︸︸ ︷α2i

k+1︷ ︸︸ ︷

x = 2i + 2j + 2k+1

Figure 1 Initial steps of inductive construction of separator sequences (left), and intuition behind
tail gadgets (right).

3.2 Separator sequences
Our goal is to construct two sequences A and B which can be split into n blocks, i.e.
A = α0α1 . . . αn−1 and B = β0β1 . . . βn−1, such that the length of the longest common
increasing subsequence of the first i blocks of A and the first j blocks of B equals i+ j, up to
an additive constant. We call A and B separator sequences, and use them later to separate
vector gadgets in order to make sure that only one pair of gadgets may interact with each
other at the same time.

We construct the separator sequences inductively. For every k ∈ N, the sequences
Ak and Bk are concatenations of 2k blocks (of varying sizes), Ak = α0

kα
1
k . . . α

2k−1
k and

Bk = β0
kβ

1
k . . . β

2k−1
k . Let sk denote the largest element of both sequences. As we will soon

observe, sk = 2k+2 − 3.
The construction works as follows: for k = 0, we can simply set A0 and B0 as one-

element sequences 〈1〉. We then construct Ak+1 and Bk+1 inductively from Ak and Bk
in two steps. First, we inflate both Ak and Bk, then after each (now inflated) block
we insert 3-element sequences, called tail gadgets, 〈2sk + 2, 2sk + 1, 2sk + 3〉 for Ak+1 and
〈2sk + 1, 2sk + 2, 2sk + 3〉 for Bk+1. Formally, we describe the construction by defining
blocks of the new sequences. For i ∈ {0, 1, . . . , 2k − 1},

α2i
k+1 = inflate(αik) ◦ 〈2sk + 2〉 , α2i+1

k+1 = 〈2sk + 1, 2sk + 3〉 ,
β2i
k+1 = inflate(βik) ◦ 〈2sk + 1〉 , β2i+1

k+1 = 〈2sk + 2, 2sk + 3〉 .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences.
The largest element of both new sequences sk+1 equals 2sk + 3, and solving the recurrence
gives indeed sk = 2k+2 − 3.

Now, let us prove two useful properties of the separator sequences.

I Lemma 12. |Ak| = |Bk| =
(3

2k + 1
)
· 2k = O

(
k2k
)
.

Proof. Observe that |Ak+1| = 2|Ak|+ 3 · 2k. Indeed, to obtain Ak+1 first we double the size
of Ak and then add 3 new elements for each of the 2k blocks of Ak. Solving the recurrence
completes the proof. The same reasoning applies to Bk. J

IPEC 2017

15:8 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

I Lemma 13. For every i, j ∈
{

0, 1, . . . , 2k − 1
}
, lcis(α0

k . . . α
i
k, β

0
k . . . β

j
k) = i+ j + 2k.

Proof. The proof is by induction on k. Assume the statement is true for k and let us prove
it for k + 1.

The “>” direction. First, consider the case when both i and j are even. Ob-
serve that inflate(α0

k . . . α
i/2
k) and inflate(β0

k . . . β
j/2
k) are subsequences of α0

k+1 . . . α
i
k+1 and

β0
k+1 . . . β

j
k+1, respectively. Thus, using the induction hypothesis and inflation properties,

lcis(α0
k+1 . . . α

i
k+1, β0

k+1 . . . β
j
k+1) > lcis(inflate(α0

k . . . α
i/2
k), inflate(β0

k . . . β
j/2
k)) =

= 2 · lcis(α0
k . . . α

i/2
k , β0

k . . . β
j/2
k) = 2 · (i/2 + j/2 + 2k) = i+ j + 2k+1.

If i is odd and j is even, refer to the previous case to get a common increasing subsequence
of α0

k+1 . . . α
i−1
k+1 and β0

k+1 . . . β
j
k+1 of length i− 1 + j + 2k+1 consisting only of elements less

than or equal to 2sk, and append the element 2sk + 1 to the end of it. Analogously, for i
even and j odd, take such an LCIS of α0

k+1 . . . α
i
k+1 and β0

k+1 . . . β
j−1
k+1, and append 2sk + 2.

Finally, for both i and j odd, take an LCIS of α0
k+1 . . . α

i−1
k+1 and β0

k+1 . . . β
j−1
k+1, and append

2sk + 1 and 2sk + 3.
The “6” direction. We proceed by induction on i + j. Fix i and j, and let L be a

longest common increasing subsequence of α0
k+1 . . . α

i
k+1 and β0

k+1 . . . β
j
k+1.

If the last element of L is less than or equal to 2sk, L is in fact a common increasing sub-
sequence of inflate(α0

k . . . α
bi/2c
k) and inflate(β0

k . . . β
bj/2c
k), thus, by the induction hypothesis

and inflation properties, |L| 6 2 · (bi/2c+ bj/2c+ 2k) 6 i+ j + 2k+1.
The remaining case is when the last element of L is greater than 2sk. In this case, consider

the second-to-last element of L. It must belong to some blocks αi′k+1 and βj
′

k+1 for i′ 6 i and
j′ 6 j, and we claim that i = i′ and j = j′ cannot hold simultaneously: by construction of
separator sequences, if blocks αik+1 and βjk+1 have a common element larger than 2sk, then
it is the only common element of these two blocks. Therefore, it cannot be the case that
both i = i′ and j = j′, because the last two elements of L would then be located in αik+1
and βjk+1. As a consequence, i′ + j′ < i+ j, which lets us apply the induction hypothesis
to reason that the prefix of L omitting its last element is of length at most i′ + j′ + 2k+1.
Therefore, |L| 6 1 + i′ + j′ + 2k+1 6 i+ j + 2k+1, which completes the proof. J

Observe that if we reverse the sequences Ak and Bk along with changing all elements
to their negations, i.e. x to −x, we obtain sequences Âk and B̂k such that Âk splits into 2k
blocks α̂0

k . . . α̂
2k−1
k , B̂k splits into 2k blocks β̂0

k . . . β̂
2k−1
k , and

lcis(α̂ik . . . α̂2k−1
k , β̂jk . . . β̂

2k−1
k) = 2 · (2k − 1)− i− j + 2k. (1)

Finally, observe that we can add any constant to all elements of the sequences Ak and Bk
(as well as Âk and B̂k) without changing the property stated in Lemma 13 (and its analogue
for Âk and B̂k, i.e. Equation (1)).

3.3 Vector gadgets

Let U = {u0, . . . , un−1} and V = {v0, . . . , vn−1} be two sets of d-dimensional (0, 1)-vectors.

L. Duraj, M. Künnemann, and A. Polak 15:9

For i ∈ {0, 1, . . . , n − 1} let us construct the vector gadgets Ui and Vi as 2d-element
sequences, by defining, for every p ∈ {0, 1, . . . , d− 1},

(Ui[2p− 1], Ui[2p]) =
{

(2p− 1, 2p) if ui[p] = 0,
(2p− 1, 2p− 1) if ui[p] = 1,

(Vi[2p− 1], Vi[2p]) =
{

(2p, 2p− 1) if vi[p] = 0,
(2p, 2p) if vi[p] = 1.

Observe that at most one of the elements 2p− 1 and 2p may appear in the LCIS of Ui
and Vj , and it happens if and only if ui[p] and vj [p] are not both equal to one. Therefore,
lcis(Ui, Vj) = d − (ui · vj), and, in particular, lcis(Ui, Vj) = d if and only if ui and vj are
orthogonal.

3.4 Final construction
To put all the pieces together, we plug vector gadgets Ui and Vj into the separator sequences
from Section 3.2, obtaining two sequences whose LCIS depends on the minimal inner product
of vectors ui and vj . We provide a general construction of such sequences, which will be
useful for proving further results in the full version of the paper.

I Lemma 14. Let X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1 be integer sequences such that none
of them has an increasing subsequence longer than δ. Then there exist sequences X and Y of
length O (δ · n logn) +

∑ |Xi|+
∑ |Yj |, constructible in linear time, such that:

lcis(X,Y) = max
i,j

lcis(Xi, Yj) + C

for a constant C that only depends on n and δ and is O (nδ).

Proof. We can assume that n = 2k for some positive integer k, adding some dummy sequences
if necessary. Recall the sequences Ak, Bk, Âk and B̂k constructed in Section 3.2. Let
A,B, Â, B̂ be the sequences obtained from Ak, Bk, Âk, B̂k by applying inflation dlog2 δe times
(thus increasing their length by a factor of ` = 2dlog2 δe > δ). Each of these four sequences
splits into (now inflated) blocks, e.g. A = α0α1 . . . αn−1, where αi = inflatedlog2 δe(αik).

We subtract from A and B a constant large enough for all their elements to be smaller
than all elements of every Xi and Yj . Similarly, we add to A′ and B′ a constant large enough
for all their elements to be larger than all elements of every Xi and Yj . Now, we can construct
the sequences X and Y as follows:

X = α0X0α̂0α1X1α̂1 . . . αn−1Xn−1α̂n−1,

Y = β0Y0β̂0β1Y1β̂1 . . . βn−1Yn−1β̂n−1.

We claim that

lcis(X,Y) = ` · (4n− 2) +M , where M = max
i,j

lcis(Xi, Yj).

Let Xi and Yj be the pair of sequences achieving lcis(Xi, Yj) = M . Recall that
lcis(α0 . . . αi, β0 . . . βj) = ` · (i+ j + n), with all the elements of this common subsequence
preceding the elements of Xi and Yj in X and Y , respectively, and being smaller than
them. In the same way lcis(α̂i . . . α̂n−1, β̂j . . . β̂n−1) = ` · (2 · (n − 1) − (i + j) + n) with
all the elements of LCIS being greater and appearing later than those of Xi and Yj . By

IPEC 2017

15:10 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

concatenating these three sequences we obtain a common increasing subsequence of X and
Y of length ` · (4n− 2) +M .

We defer the simple remainder of the proof, i.e., proving lcis(X,Y) 6 ` · (4n− 2) +M to
the full version of the paper. J

Proof of Theorem 3. Let U = {u0, . . . , un−1}, V = {v0, . . . , vn−1} be two sets of binary
vectors in d dimensions. In Section 3.3 we constructed vector gadgets Ui and Vj , for
i, j ∈ {0, 1, . . . , n − 1}, such that lcis(Ui, Vj) = d − (ui · vj). To these sequences we apply
Lemma 14, with δ = 2d, obtaining sequences X and Y of length O (n lognpoly(d)) such that
lcis(X,Y) = C + d − mini,j(ui · vj) for a constant C. This reduction, combined with an
O
(
n2−ε) time algorithm for LCIS, would yield an O

(
n2−εpolylog(n)poly(d)

)
algorithm for

OV, refuting Hypothesis 9 and, in particular, SETH. J

4 Conclusion and Open Problems

We prove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic-time al-
gorithms under SETH. It remains open whether LCIS admits mildly subquadratic algorithms,
such as the Masek-Paterson algorithm for LCS [35]. Furthermore, we give tight SETH-based
lower bounds for k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly
subquadratic-time algorithms are ruled out under SETH for slightly superlogarithmic alphabet
sizes ([39] and Theorem 6). On the other hand, for binary and ternary alphabets, even
linear time algorithms exist [34, 23]. Can LCWIS be solved in time O

(
n2−f(|Σ|)) for some

decreasing function f that yields strongly subquadratic-time algorithms for any constant
alphabet size |Σ|?

Finally, we can compute a (1 + ε)-approximation of LCIS in O
(
n3/2ε−1/2polylog(n)

)

time by an easy observation (see the appendix in the full version). Can we improve upon this
running time or give a matching conditional lower bound? Note that a positive resolution
seems difficult by the reduction in Observation 1: Any nα, α > 0, improvement over this
running time would yield a strongly subcubic (1 + ε)-approximation for 3-LCS, which seems
hard to achieve, given the difficulty to find strongly subquadratic (1 + ε)-approximation
algorithms for LCS.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-

ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-
ams. Simulating branching programs with edit distance and friends or: A polylog shaved
is a lower bound made. In Proc. 48th Annual ACM Symposium on Symposium on Theory
of Computing (STOC’16), pages 375–388, 2016.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. of 41st International Colloquium on Automata, Languages,
and Programming (ICALP’14), pages 39–51, 2014.

4 Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity of
the longest common subsequence problem. Journal of the ACM, 23(1):1–12, 1976.

5 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

L. Duraj, M. Künnemann, and A. Polak 15:11

6 Hsing-Yen Ann, Chang-Biau Yang, and Chiou-Ting Tseng. Efficient polynomial-time al-
gorithms for the constrained LCS problem with strings exclusion. Journal of Combinatorial
Optimization, 28(4):800–813, 2014.

7 Alberto Apostolico and Concettina Guerra. The longest common subsequence problem
revisited. Algorithmica, 2(1):316–336, 1987.

8 Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest com-
mon subsequence problems. International Journal of Foundations of Computer Science,
16(6):1099–1109, 2005.

9 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory of
Computing (STOC’15), pages 51–58, 2015.

10 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proc. 57th Annual Symposium on Foundations of Computer Science, (FOCS’16), pages
457–466, 2016.

11 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply
faster clique algorithms. In Proc. 34th International Conference on Machine Learning
(ICML’17), 2017. To appear.

12 Gary Benson, Avivit Levy, S. Maimoni, D. Noifeld, and B. Riva Shalom. Lcsk: A refined
similarity measure. Theoretical Computer Science, 638:11–26, 2016.

13 Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence
algorithms. In Proc. 7th International Symposium on String Processing and Information
Retrieval (SPIRE’00), pages 39–48, 2000.

14 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014.

15 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Founda-
tions of Compu ter Science (FOCS’15), pages 79–97, 2015.

16 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proc. 29th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA’18), 2018. To appear.

17 Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Efficient
algorithms for finding a longest common increasing subsequence. Journal of Combinatorial
Optimization, 13(3):277–288, 2007.

18 Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common sub-
sequence problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

19 Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A
simple algorithm for the constrained sequence problems. Inf. Process. Lett., 90(4):175–179,
2004. doi:10.1016/j.ipl.2004.02.008.

20 Vaclav Chvatal, David A. Klarner, and Donald E. Knuth. Selected combinatorial research
problems. Technical Report CS-TR-72-292, Stanford University, Department of Computer
Science, 6 1972.

21 Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subsequence
and application. Information & Computation, 208(9):1054–1059, 2010.

22 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. In Proc. 44th International Colloquium on Automata,
Languages, and Programming (ICALP’17), pages 22:1–22:15, 2017.

23 Lech Duraj. A linear algorithm for 3-letter longest common weakly increasing subsequence.
Information Processing Letters, 113(3):94–99, 2013.

IPEC 2017

15:12 Tight Conditional Lower Bounds for Longest Common Increasing Subsequence

24 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

25 Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS.
In Proc. 17th International Symposium on String Processing and Information Retrieval
(SPIRE’10), pages 250–257, 2010.

26 Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM, 24(4):664–675, 1977.

27 J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing
Science Technical Report 41, Bell Laboratories, 1975.

28 James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest sub-
sequences. Communications of the ACM, 20(5):350–353, 1977.

29 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

31 Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems.
In Combinatorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona,
USA, April 29 - May 1, 1992, Proceedings, pages 52–66, 1992.

32 Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence
problem for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

33 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained Com-
plexity of One-Dimensional Dynamic Programming. In Proc. 44th International Colloquium
on Automata, Languages, and Programming (ICALP’17), pages 21:1–21:15, 2017.

34 Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms
for computing longest common increasing subsequences. Journal of Discrete Algorithms,
9(4):314–325, 2011.

35 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980.

36 Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM,
13(2):90–94, 1970.

37 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

38 Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

39 Adam Polak. Why is it hard to beat O(n2) for longest common weakly increasing sub-
sequence? CoRR, abs/1703.01143, 2017.

40 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proc. 45th Annual ACM Symposium on Symposium
on Theory of Computing (STOC’13), pages 515–524, 2013.

41 Yin-Te Tsai. The constrained longest common subsequence problem. Information Pro-
cessing Letters, 88(4):173–176, 2003.

42 Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

43 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

44 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–
29, 2015.

L. Duraj, M. Künnemann, and A. Polak 15:13

45 I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing
a longest common increasing subsequence. Information Processing Letters, 93(5):249–253,
2005.

46 Daxin Zhu, Lei Wang, Tinran Wang, and Xiaodong Wang. A simple linear space algorithm
for computing a longest common increasing subsequence. CoRR, abs/1608.07002, 2016.

IPEC 2017

Order
https://doi.org/10.1007/s11083-017-9444-1

On an Extremal Problem for Poset Dimension

Grzegorz Guśpiel1 ·Piotr Micek1 ·Adam Polak1

Received: 22 May 2017 / Accepted: 1 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract Let f (n) be the largest integer such that every poset on n elements has a 2-
dimensional subposet on f (n) elements. What is the asymptotics of f (n)? It is easy to see
that f (n) >= n1/2. We improve the best known upper bound and show f (n) = O(n2/3).

For higher dimensions, we show fd(n) = O
(
n

d
d+1

)
, where fd(n) is the largest integer such

that every poset on n elements has a d-dimensional subposet on fd(n) elements.

Keywords Partially ordered sets · Poset dimension · Extremal combinatorics ·
Permutation matrices

1 Introduction

Every partially ordered set on n elements has a chain or an antichain of size at least n1/2,
this is an immediate consequence of Dilworth’s Theorem or its easier dual counterpart.
Chains and antichains are very special instances of 2-dimensional posets. Surprisingly, the
following simple problem is open:

Grzegorz Guśpiel was partially supported by the Polish Ministry of Science and Higher Education
grant DI2013 000443. Piotr Micek was partially supported by the National Science Center of Poland
under grant no. 2015/18/E/ST6/00299. Adam Polak was partially supported by the Polish Ministry of
Science and Higher Education program “Diamentowy Grant”.

� Grzegorz Guśpiel
guspiel@tcs.uj.edu.pl

Piotr Micek
micek@tcs.uj.edu.pl

Adam Polak
polak@tcs.uj.edu.pl

1 Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Order

Let f (n) be the largest integer such that every poset on n elements has a 2-dimensional
subposet on f (n) elements. What is the asymptotics of f (n)?

Although this sounds like a natural extremal-type question for posets, it was posed only
in 2010, by François Dorais [1]. Clearly, n1/2 � f (n) � n. Reiniger and Yeager [5] proved
a sublinear upper bound, that is f (n) = O(n0.8295). Their construction is a lexicographic
power of standard examples.

The main idea behind our contribution was a belief that a (k × k)-grid is asymptotically
the largest 2-dimensional subposet of the (k × k × k)-cube. This led us to the following
theorem:

Theorem 1

f (n) � 4n2/3 + o
(
n2/3

)
.

Recall that the dimension dim(P) of a poset P is the least integer d such that elements
of P can be embedded into R

d in such a way that x < y in P if and only if the point of x

is below the point of y with respect to the product order on Rd . Equivalently, the dimension
of P is the least d such that there are d linear extensions of P whose intersection is P . By
convention, whenever we say a poset is d-dimensional, we mean its dimension is at most d.

Reiniger and Yeager [5] also studied the guaranteed size of the largest d-dimensional
subposet of poset on n elements. Let fd(n) be the largest integer such that every poset on n

elements has a d-dimensional subposet on fd(n) elements. They proved, in particular, that
fd(n) = O(ng), where g = log2d+2(2d + 1).

Let [n] denote {0, 1, . . . , n − 1}. By the nd-grid we mean the poset on the ground set
[n]d with the natural product order, i.e. (x1, x2, . . . , xd) � (y1, y2, . . . , yd) if xi � yi for all
i. Note that the nd-grid is a d-dimensional poset. Moreover, it is easy to see that the nd+1-
grid contains as a subposet the nd-grid – simply fix one coordinate to an arbitrary value.
We prove that this is asymptotically the largest d-dimensional subposet of the nd+1-grid.
For d � 7, this observation improves on the best known upper bound for the asymptotics of
fd(n).

Theorem 2

fd(n) = O
(
n

d
d+1

)
.

In order to show this we apply a multidimensional version of the theorem by Marcus and
Tardos [3] saying that the number of 1-entries in an n × n (0, 1)-matrix that avoids a fixed
permutation matrix P is O(n). The multidimensional version was proved by Klazar and
Marcus [2], and then independently byMethuku and Pálvölgyi [4], who applied it to another
extremal problem related to subposets, i.e. they proved that for every poset P the size of any

family of subsets of [n] that does not contain P as a subposet is at mostO
((

n
�n/2�

))
.

2 Dimension Two

If we ignore a multiplicative constant, Theorem 1 becomes a special case of Theorem 2.
Still, we provide a short and simple proof of Theorem 1, as we believe it might provide a
better insight to the core of the problem.

Order

Fig. 1 A subposet of C3 composed of all elements with z-coordinate equal to i (on the left) and the poset
C3 itself (on the right)

Proof of Theorem 1 First we argue for values of n such that n = r3 for some r ∈ N. Then
at the end of the proof we address the general case.

Let Cr be the poset with the ground set [r]3, where (x1, y1, z1) �Cr (x2, y2, z2) if

(z1 � z2) and (y1 < y2 or (y1 = y2 and x1 = x2)),

see Fig. 1.
Consider any subposet S of Cr such that |S| � 4r2. We will prove that dim(S) > 2 by

showing that S contains as a subposet the poset1 of dimension 3 presented in Fig. 2.
Let S1 be the poset obtained from S by removing every element (x, y, z) such that S

contains no element (x, y, z′) with z′ < z. Note that |S1| � 3r2, as for every pair (x, y) ∈
[r]2 at most one element is removed. Now by the pigeonhole principle, we get that S1

contains a subposet S2 on at least 3r elements such that all elements of S2 have the same
z-coordinate.

Let A be any point in S2 with the minimal y-coordinate and let S3 be the subposet
of S2 obtained by removing all points with the same y-coordinate as A. As there can be
at most r points with the same y-coordinate, |S3| � 2r . By the pigeonhole principle for
r − 1 containers, S3 contains three points with the same y-coordinate, say B1 = (x1, y, z),
B2 = (x2, y, z), B3 = (x3, y, z). Thanks to the removal rule that led to the creation of S1,
the poset S contains points C1 = (x1, y, z1), C2 = (x2, y, z2), C3 = (x3, y, z3) for some
z1, z2, z3 < z.

One can easily verify that the subposet {A,B1, B2, B3, C1, C2, C3} of S is the poset in
Fig. 2. Since it has dimension 3, we have dim(S) > 2, which concludes the proof for n

being a perfect cube.

1This is one of the 3-irreducible posets, which are listed in [6].

Order

Fig. 2 A poset of dimension 3
found in any subposet of Cr of
size at least 4r2

Now, fix any n ∈ N, and let r = ⌈
3
√

n
⌉
. Note that f is non-decreasing, thus

f (n) � f (r3) � 4r2 � 4(3
√

n + 1)2 = 4n2/3 + o
(
n2/3

)
.

With a more tedious analysis, which involves one more forbidden subposet and removal
of both lowest and highest z-coordinate points in each (x, y)-column, we can prove a
slightly stronger upper bound, i.e. f (n) � 3n2/3 + o

(
n2/3

)
. However, we do not know how

to improve on the asymptotics of f .

3 Higher Dimensions

In this section we prove Theorem 2. In order to do this we apply a multidimensional version
of the theorem by Marcus and Tardos [3], proved by Klazar and Marcus [2]. First, we recall
their result. The original terminology can be simplified because our argument does not
use arbitrary sized matrices and we can focus only on multidimensional analogs of square
matrices.

We call a subset of [n]d a d-dimensional (0, 1)-matrix.
For two d-dimensional (0, 1)-matrices A ⊆ [n]d and B ⊆ [k]d , we say that A contains

B if there exist d increasing injections hi : [k] → [n], i ∈ {1, 2, . . . , d}, such that
if (x1, x2, . . . , xd) ∈ B, then (h1(x1), h2(x2), . . . , hd(xd)) ∈ A,

for all (x1, x2, . . . , xd) ∈ [k]d . Otherwise, we say that A avoids B.
We say that A ⊆ [n]d is a d-dimensional permutation of [n]

|A| = n and ∀x,y∈A
x
=y

∀i∈{1,2,...,d} xi
= yi .

In other words, the size of the projection of A onto the i-th dimension equals n for each
i ∈ {1, 2, . . . , d}.

Theorem 3 (Klazar–Marcus [2]) For every fixed d-dimensional permutation P the max-
imum number of elements of a d-dimensional matrix A ⊆ [n]d that avoids P is
O(nd−1).

Now we are ready to prove the following statement, which clearly implies Theorem 2.

Theorem 4 The largest d-dimensional subposet of the nd+1-grid hasO(nd) elements.

Proof We fix any poset of dimension d+1, e.g. the standard example Sd+1, i.e. the inclusion
order of singletons and d-element subsets of [d + 1]. Now, we fix a realizer of Sd+1 of size

Order

d + 1, i.e. a set of d + 1 linear orders {L1, L2, . . . , Ld+1} such that L1 ∩L2 ∩ · · · ∩Ld+1 =
Sd+1. Finally, we construct a (d +1)-dimensional permutation P ⊆ [2(d +1)]d+1 such that
(x1, x2, . . . , xd+1) ∈ P if and only if there exists x ∈ Sd+1 such that x is the xi-th element
of Li for each i ∈ {1, 2, . . . , d + 1}. Note that the natural product order of elements of P is
isomorphic to Sd+1.

Now, take any d-dimensional subposet of the nd+1-grid and denote by A the set of its
elements. In particular, the subposet does not contain Sd+1 as a subposet. Note that it implies
that A avoids P , thus by Theorem 3 the size of the subposet is O(nd).

Note that the proof above does not exploit any specific properties of the standard exam-
ple, apart from its dimension. In particular, it implies that every (d + 1)-dimensional poset
P can be found in every subposet of the nd+1-grid of size �(nd), with the constant hidden
in the asymptotic notation depending on the choice of P .

Acknowledgements We send thanks to Wojciech Samotij and Dömötör Pálvölgyi for pointing us to useful
references.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Dorais, F.G.: Subposets of small Dushnik-Miller dimension. MathOverflow. http://mathoverflow.net/
questions/29169 (2010). Accessed 13 Feb 2016

2. Klazar, M., Marcus, A.: Extensions of the linear bound in the Füredi-Hajnal conjecture. Adv. Appl. Math.
38(2), 258–266 (2007). https://doi.org/10.1016/j.aam.2006.05.002

3. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley-Wilf conjecture. J. Comb. Theory
A 107(1), 153–160 (2004). https://doi.org/10.1016/j.jcta.2004.04.002

4. Methuku, A., Pálvölgyi, D.: Forbidden hypermatrices imply general bounds on induced forbidden sub-
poset problems. Combin. Probab. Comput. 26(4), 593–602 (2017). https://doi.org/10.1017/S0963548317
000013

5. Reiniger, B., Yeager, E.: Large subposets with small dimension. Order 33(1), 81–84 (2016). https://doi.org/
10.1007/s11083-015-9353-0

6. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins University
Press, Baltimore (1992)

Appendix: Unpublished manuscript

ONLINE COLORING OF SHORT INTERVALS

GRZEGORZ GUTOWSKI, KONSTANTY JUNOSZA-SZANIAWSKI, PATRYK MIKOS,
ADAM POLAK, AND JOANNA SOKÓŁ

Abstract. We study the online graph coloring problem restricted to the intersection
graphs of intervals with lengths in [1, σ]. For σ = 1 it is the class of unit interval graphs,
and for σ =∞ the class of all interval graphs. Our focus is on intermediary classes.

We present a (1 + σ)-competitive algorithm, which beats the state of the art for
1 < σ < 2. For σ = 1 our algorithm matches the performance of FirstFit, which
is 2-competitive for unit interval graphs. For σ = 2 it matches the Kierstead-Trotter
algorithm, which is 3-competitive for all interval graphs.

On the lower bound side, we prove that no algorithm is better than 5/3-competitive
for any σ > 1, nor better than 7/4-competitive for any σ > 2, nor better than 5/2-
competitive for arbitrarily large values of σ.

1. Introduction

In the online graph coloring problem the input graph is presented to the algorithm
vertex by vertex, along with all the edges adjacent to the already presented vertices.
Each vertex must be assigned a color, different than any of its neighbors, immediately
and irrevocably at the moment it is presented, without any knowledge of the remaining
part of the graph. The objective is to minimize the number of used colors. The problem
and its variants attract much attention, both for theoretical properties and practical
applications in network multiplexing, resource allocation, and job scheduling.

The standard performance measure, used to analyze online algorithms, is the compet-
itive ratio, i.e., the worst-case guarantee on the ratio of the solution given by an online
algorithm to the optimal offline solution (see Sect. 1.1 for a formal definition).

In the general case, of online coloring of arbitrary graphs there is no hope for any algo-
rithm with a constant competitive ratio. The best known algorithm [5] usesO(χ · n/ log n)
colors for n-vertex χ-colorable graphs, i.e. it is O(n/ log n)-competitive, and there is a
lower bound [6] showing that no online graph coloring algorithm can be o

(
n/ log2 n

)
-

competitive. It is thus common to study the problem restricted to specific graph classes.
Having in mind the applications in scheduling, one of the important special cases is

the class of interval graphs, i.e. intersection graphs of intervals on the real line. The
classic result is by Kierstead and Trotter [9], who designed a 3-competitive algorithm
and proved a matching lower bound. However, in the special case of unit interval graphs,
i.e. intersection graphs of intervals of a fixed (unit, w.l.o.g.) length, even the simple
greedy FirstFit algorithm is 2-competitive [2].

Grzegorz Gutowski was partially supported by the National Science Center of Poland under grant
no. 2016/21/B/ST6/02165. Patryk Mikos was partially supported by the National Science Center
of Poland under grant no. 2014/14/A/ST6/00138. Adam Polak was partially supported by the Pol-
ish Ministry of Science and Higher Education program Diamentowy Grant under grant no. DI2012
018942. Joanna Sokół was partially supported by the National Science Center of Poland under grant
no. 2016/23/N/ST1/03181.

1

ar
X

iv
:1

80
2.

09
50

3v
1

 [
m

at
h.

C
O

]
 2

6
Fe

b
20

18

A natural question arises, what happens in between the interval and unit interval graph
classes. In particular, we ask about the optimal competitive ratio of online coloring algo-
rithms for intersection graphs of intervals of length restricted to a fixed range. Formally,
let us introduce the σ-interval coloring problem.

Definition 1. For σ > 1, the σ-interval coloring problem asks: Given a sequence of
closed intervals [l1, r1], [l2, r2], . . . , [ln, rn], such that 1 6 (ri − li) 6 σ for every i ∈ [n],
find a sequence of colors, c1, c2, . . . , cn, such that

∀i 6=j
(
[li, ri] ∩ [lj, rj] 6= ∅

)
⇒ (ci 6= cj),

minimizing the number of distinct colors
∣∣{c1, c2, . . . , cn}

∣∣.
We study the problem in the online setting, i.e., intervals are presented one by one, in

an arbitrary order, and each interval has to be colored immediately and irrevocably after
it is presented.

Note that we choose to include the interval representation in the input, instead of
presenting the mere graph. It seems a plausible modelling choice given the scheduling
applications. Moreover, it lets algorithms exploit geometric properties of the input, and
not only structural graph properties. Naturally, any lower bound obtained for this variant
of the problem transfers to the harder variant with no interval representation in the input.

1.1. Our Results. Before we state our results, let us give a formal definition of the
competitive ratio. In this paper we focus on the asymptotic competitive ratio.

Definition 2. Let A be an online graph coloring algorithm, and let A(χ) denote the
maximum number of colors A uses to color any graph which can be colored offline using
χ-colors (i.e. its chromatic number is at most χ). We say that A has the asymptotic
competitive ratio α (or that A is α-competitive, for short), if lim supχ→∞

A(χ)
χ
6 α.

Another popular performance measure for online algorithms is the absolute competitive
ratio, which requires that A(χ)

χ
6 α holds for all χ (and not only in the limit). The choice

of the asymptotic, instead of absolute, competitive ratio for our analysis makes things
easier for the algorithm and harder for the lower bounds. In our algorithm, sadly, we do
not know how to get rid of a constant additive overhead, which vanishes only for large
enough χ. The good side is, our lower bounds for the asymptotic competitive ratio imply
the identical lower bounds for the absolute competitive ratio.

1.1.1. Algorithm. Our positive result is the existence of a (1 + σ)-competitive algorithm.

Theorem 3. For every σ ∈ Q, there is an algorithm for online σ-interval coloring with
1 + σ asymptotic competitive ratio.

Note that for σ′ > σ every σ′-interval coloring algorithm is also a correct σ-interval
coloring algorithm, with the same upper bound on its competitive ratio. Therefore, for
σ ∈ R r Q Theorem 3 yields an online σ-interval coloring algorithm with a competitive
ratio arbitrarily close to 1 + σ. This distinction between rational and irrational values of
σ becomes somewhat less peculiar in the light of the results of Fishburn and Graham [3],
who proved, among other things, that the classes of graphs with interval representation
with lengths in [1, σ] are right-continuous exactly at irrational σ.

Until now, the state-of-the art was the 2-competitive FirstFit algorithm [2] for σ = 1
and the 3-competitive Kierstead-Trotter algorithm [9] for σ > 1. Thus, our algorithm
matches the performance of FirstFit for σ = 1, and beats the Kierstead-Trotter algorithm
up until σ = 2.

2

1.1.2. Lower Bounds. In order to prove lower bounds for online problems, it is often con-
venient to look at the problem as a combinatorial game between two players, Algorithm
and Presenter. In our case, in each round Presenter reveals an interval, and Algorithm
immediately and irrevocably assigns it a color. While Algorithm tries to minimize the
number of different colors it assigns, the Presenter’s goal is to force Algorithm to use as
many colors as possible. A strategy for Presenter implies a lower bound on the competi-
tive ratio of any algorithm solving the problem.

Our negative results include a series of strategies for Presenter with the following
consequences.

Theorem 4. For every σ > 1 there is no online algorithm for σ-interval coloring with
the asymptotic competitive ratio less than 5/3.

Theorem 5. For every σ > 2 there is no online algorithm for σ-interval coloring with
the asymptotic competitive ratio less than 7/4.

Theorem 6. For every ε > 0 there is σ > 1 such that there is no online algorithm for
σ-interval coloring with the asymptotic competitive ratio 5/2− ε.

The following, more illustrative, statement is a direct corollary of Theorem 6.

Corollary 7. There is no online algorithm that works for all σ > 1 and uses at most
2.499 · ω + f(σ) colors for ω-colorable graphs (for any function f).

1.2. Methods. Our algorithm is inspired by the recent result for online coloring of unit
disk intersection graphs [7]. We cover the real line with overlapping blocks, grouped into
a constant number of classes. Each class gets a private set of available colors. When an
interval is presented, the algorithm chooses a block in a round-robin fashion, and greedily
assigns a color from its class.

All our lower bounds can be considered as generalizations of the 3/2 lower bound for
online coloring of unit interval graphs by Epstein and Levy [2]. In particular, we heavily
use their separation strategy. Our 5/2 lower bound borrows also from the work of Kier-
stead and Trotter [9]. However, in order to control the length of intervals independently
of the number of colors, we cannot simply use the pigeonhole principle, as they did. In-
stead, we develop Lemmas 18 and 19, which let us overcome this issue, at a cost of a
worse bound for the competitive ratio, i.e. 5/2 instead of 3.

1.3. Related Work. Interval graphs have been intensively studied since the sixties [1,
10], and, in particular, they are known to be perfect, i.e. the chromatic number χ of an
interval graph always equals the size of the largest clique ω (see, e.g., [4]). To construct
an optimal coloring offline it is enough to color the graph greedily in a nondecreasing
order of the left ends of the intervals.

For the most basic approach for online coloring, that is the FirstFit algorithm, the
competitive ratio for interval graphs is unknown. After a series of papers, the most recent
results state that FirstFit is at least 5- and at most 8-competitive [8, 11]. Kierstead and
Trotter [9] designed a more involved online coloring algorithm, which uses at most 3ω−2
colors for ω-colorable interval graphs, and proved that there exists a strategy that forces
any online coloring algorithm to use exactly that number of colors. For intersection
graphs of intervals of unit length any online coloring algorithm uses at least 3

2
ω colors,

and FirstFit uses at most 2ω − 1 colors [2].
It seems a natural question to ask if it is possible to improve the bound of 3ω − 2 by

assuming that interval lengths belong to a fixed range. The study of interval graphs with
3

bounded length representations was initiated by Fishburn and Graham [3]. However, it
focused mainly on the combinatorial structure, and not its algorithmic applications.

Kierstead and Trotter [9] give, for every ω ∈ N+, a strategy for Presenter to construct an
ω-colorable set of intervals while forcing Algorithm to use at least 3ω−2 colors. However,
the length of presented intervals increases with the increasing ω. For this reason, with the
intervals lengths restricted to [1, σ], their lower bound is only for the absolute competitive
ratio and does not exclude, say, an algorithm that always uses at most 2ω + σ10 colors.
On the contrary, in Theorem 6 we rule out the existence of such an algorithm.

2. Algorithm

Theorem (Reminder of Theorem 3). For every σ ∈ Q, there is an algorithm for online
σ-interval coloring with 1 + σ asymptotic competitive ratio.

Proof. Let us present an algorithm which, in principle, works for any real σ, however only
for a rational σ it achieves the declared competitive ratio. The algorithm has a positive
integer parameter b. Increasing the parameter brings the asymptotic competitive ratio
closer to 1 + σ at the cost of increasing the additive constant. More precisely, given an
ω-colorable set of intervals our algorithm colors it using at most db · (1 + σ)e ·

(
ω
b
+ b− 1

)

colors, and thus its competitive ratio is db·(1+σ)e
b

+ O(1/ω). For a rational σ, in order
to obtain the declared competitive ratio it is sufficient to set b to the smallest possible
denominator of a simple fraction representation of σ. Let ϕ = db · (1 + σ)e. The algorithm
will use colors from the set {0, 1, . . . , ϕ− 1} × N.

Now, let us consider the partition of the real line into small blocks. For i ∈ Z, the i-th
small block occupies interval [i · 1

b
, (i+ 1) · 1

b
). Moreover, we define large blocks. The i-th

large block occupies interval [i · 1
b
, i · 1

b
+ 1). See Fig. 1.

0 1 2−1 1
3

.

.

Figure 1. Small blocks (up), and large blocks (down), for b = 3

Let us point out certain properties of the blocks, which will be useful in the further
analysis. Each large block is the sum of b consecutive small blocks, and each small block
is a subset of b consecutive large blocks. Further, length of a large block is 1, and for
any two intervals of length in [1, σ] that both have the left endpoint in the same large
block, the two intervals intersect. Thus, the intervals whose left endpoints belong to a
fixed large block form a clique. Finally, if the indices of two large blocks differ by at least
ϕ, then any two intervals – one with the left endpoint in one block, the other with the
left endpoint in the other – do not intersect.

With each small block the algorithm associates a small counter, and with each large
block the algorithm associates a large counter. Let Si denote the small counter of the
i-th small block, and Li denote the large counter of the i-th large block. Initially, all the
small and large counters are set to zero.

To assign a color to an interval, the algorithm proceeds as follows:
(1) Let i be the index of the small block containing the left endpoint of the interval.

4

(2) Let j be the index of the large block containing the left endpoint of the interval
such that j ≡ Si (mod b). Note that there is exactly one such j.

(3) Assign to the interval the color (j mod ϕ,Lj).
(4) Increase the small counter Si by one.
(5) Increase the large counter Lj by one.
First let us argue that the algorithm outputs a proper coloring. Consider any two

intervals which were assigned the same color. Let j1 and j2 denote the indices of the
large blocks selected for these intervals by the algorithm. Since the colors of the two
intervals have the same first coordinates, we have that j1 ≡ j2 (mod ϕ). However, since
the second coordinates, which are determined by large counters, are also the same, j1 and
j2 must be different, and thus they differ by at least ϕ. It follows that the two intervals
do not intersect and thus the coloring is proper.

It remains to bound the number of colors in terms of the clique number ω. Let j be
the index of the maximum large counter Lj. Clearly, the algorithm used at most ϕ · Lj
colors in total. Let C denote the set of intervals with the left endpoints in the j-th large
block and colored with a color in {j mod ϕ} ×N. Observe that |C| = Lj. Let xk denote
the number of intervals in C which have the left endpoint in the k-th small block. Recall
that the j-th large block is the sum of b small blocks – indexed j, j + 1, . . . , j + b− 1 –
and thus Lj = xj + xj+1 + · · · + xj+b−1. Now, observe that, because of the round robin
selection in the step 2 of the algorithm,

Sk > b · (xk − 1) + 1.

Let D denote the set of all intervals with the left endpoints in the j-th large block. We
can bound the number of intervals in D

|D| =
(
j+b−1∑

k=j

Sk

)
> b · (Lj − b) + b.

Recall that D is a clique and thus the clique number ω of the input graph is at least the
size of D. Therefore Lj 6 ω+b·(b−1)

b
, and the algorithm used at most

db · (1 + σ)e ·
(ω
b
+ b− 1

)

colors. �

3. Lower Bounds

In this section we show several strategies for Presenter that force Algorithm to use
many colors while the introduced set of intervals is colorable with a smaller number of
colors, and contains only short intervals. To properly capture asymptotic properties of
those strategies we give the following formal definitions.

Definition 8. For ω,C ∈ N+ and σ,M ∈ R+, an 〈ω,C, σ,M〉-strategy is a strategy
for Presenter that forces Algorithm to use at least C colors subject to the following
constraints:

(1) the set of introduced intervals is ω-colorable,
(2) every introduced interval has length at least 1 and at most σ,
(3) every introduced interval is contained in the interval [0,M].

We are interested in providing strategies that achieve the biggest possible ratio C
ω
for

large ω. This motivates the following definition.
5

ω

separation phase
width: ω − ω′

M + ε

final phase
width: ω − ω′

colors: |Z| = ω − ω′

separation phase
width: ω′

colors: |Y| = ω′
ω′

initial phase
width: ω′

colors: |X | = αω′ − δ

M1 + ε
2

M + 1 + ε

Figure 2. Strategy construction in Lemma 11

Definition 9. An 〈α, σ,M〉-schema is a set of 〈ω,Cω, σ,M〉-strategies for all ω ∈ N+

such that Cω = αω − o(ω).
Note that the existence of an 〈α, σ,M〉-schema implies a lower bound of α for the

asymptotic competitive ratio of any online algorithm solving the σ-interval coloring prob-
lem.

Kierstead and Trotter [9] give an 〈ω, 3ω − 2, f(ω), f(ω)〉-strategy for all ω ∈ N+. How-
ever, their family of strategies does not yield an 〈α, σ,M〉-schema, because the length of
the presented intervals grows with ω.

Example 10 (〈1, 1, 1〉-schema). For any ω ∈ N+, a strategy that introduces the interval
[0, 1] in every round 1, . . . , ω is an 〈ω, ω, 1, 1〉-strategy. The set of these strategies is a
〈1, 1, 1〉-schema.

In the rest of this section we show a series of constructions that use an existing schema
to create another schema with different parameters. The 〈1, 1, 1〉-schema given above is
the initial step for those constructions.

Let S be an 〈ω,C, σ,M〉-strategy. We say that Presenter uses strategy S in the interval
[x, x+M] meaning that Presenter plays according to S, presenting intervals shifted by
x until Algorithm uses C colors.

3.1. Warm-up. Our first construction is a natural generalization of the strategy for unit
intervals given by Epstein and Levy [2]. It is surpassed by more involved strategies coming
later, but it serves as a gentle introduction to our framework.

Lemma 11. If there is an 〈α, σ,M〉-schema, then there is a
〈
2− 1

α+1
,M + ε,M + 1 + ε

〉
-

schema for every ε > 0.

Proof. Take arbitrary ω ∈ N+, and let ω′ =
⌊

ω
α+1

⌋
. The 〈α, σ,M〉-schema contains an

〈ω′, αω′ − δ, σ,M〉-strategy S for some δ = o(ω′). The strategy for Presenter consists
of three phases (see Fig. 2). In the first phase, called the initial phase, Presenter uses
strategy S inside the interval [1 + ε,M + 1 + ε]. Let C = αω′ − δ and let X denote the
set of C colors used by Algorithm in the initial phase.

The second phase, borrowed from [2], is called the separation phase. In this phase,
Presenter plays the following separation strategy for ω rounds. Let l1 = 0. In the i-th
round of the separation phase Presenter introduces the interval [li, li + 1]. If Algorithm

6

colors the interval with one of the colors in X , let li+1 = li+
ε

2i+1 . Otherwise, let li+1 = li.
Observe that all intervals introduced in the separation phase have length 1 and lω < ε

2
.

Thus, every interval introduced in the separation phase is contained in
[
0, 1 + ε

2

]
and any

two of those intervals intersect. Furthermore, the choice of li’s guarantees that for any
two intervals x, y introduced in the separation phase, x colored with a color in X , and y
colored with a color not in X , we have that the left end-point of x is to the left of the left
end-point of y. Let Y be the set of ω′ right-most intervals introduced in the separation
phase. Let Y be the set of colors used by Algorithm on the intervals in Y . As C+ω′ < ω,
we get that sets of colors X and Y are disjoint.

For the last phase, called the final phase, let r be the left-most right end-point of an
interval in Y . In the final phase Presenter introduces ω − ω′ times the same interval
[r,M + 1 + ε]. This interval intersects all intervals introduced in the initial phase, all
intervals in Y , and no other interval introduced in the separation phase. Thus, Algorithm
must use ω−ω′ colors in the final phase that are different from the colors in both X and
Y . Let Z denote the set of colors used by Algorithm in the final phase.

The presented set of intervals is clearly ω-colorable and Algorithm used at least |X |+
|Y|+ |Z| = αω′− δ+ω′+ω−ω′ =

(
2− 1

α+1

)
ω− o(ω) many colors. The longest interval

presented has length M + ε, and all intervals are contained in [0,M + 1 + ε]. Thus, we
have constructed a

〈
2− 1

α+1
,M + ε,M + 1 + ε

〉
-schema. �

Corollary 12. There is a
〈
F2n+1

F2n
, n+ ε, n+ 1 + ε

〉
-schema, for every n ∈ N+ and every

ε > 0, where Fn is the n-th Fibonacci number (F0 = F1 = 1, Fn+2 = Fn+1 + Fn).

Proof. Starting with a 〈1, 1, 1〉-schema and repeatedly applying Lemma 11 one can gen-
erate a family of schemas 〈αn, σn + ε,Mn + ε〉, such that αn+1 = 2 − 1

αn+1
, σn+1 = Mn,

Mn+1 = Mn + 1 and α0 = σ0 = M0 = 1. Solving the recurrence equations we get
αn = F2n+1

F2n
, σn = n, and Mn = n+ 1. �

Note that this method cannot give a lower bound with the multiplicative factor better
than limn→∞

F2n+1

F2n
= 1+

√
5

2
≈ 1.61803. However, we can get arbitrarily close to this

bound. That is, for every ε > 0 there is a σ and ω0 such that for each ω > ω0 there is
a strategy for Presenter to present intervals of length at most σ and force Algorithm to
use

(
1+
√
5

2
− ε
)
· ω colors on an ω-colorable set of intervals.

Observation 13. There is no online algorithm that works for all σ > 1 and uses at most
1.618 · ω + f(σ) colors for ω-colorable graphs (for any function f).

3.2. The 5/3 Lower Bound.

Lemma 14. If there is an 〈α, σ,M〉-schema, then there is a
〈
2− 1

α+2
,M + ε,M + 2 + ε

〉
-

schema for every ε > 0.

Proof. The proof of this lemma is very similar to the proof of Lemma 11, but now we
have two separation phases instead of just one, see Fig. 3. Take arbitrary ω ∈ N+, and
let ω′ =

⌊
ω
α+2

⌋
. Let S be an 〈ω′, αω′ − δ, σ,M〉-strategy for some δ = o(ω′).

In the initial phase, Presenter uses S inside interval
[
1 + ε

2
,M + 1 + ε

2

]
, and forces

Algorithm to use C = αω′ − δ colors. Let X denote the set of those colors.
In the separation phase, Presenter plays the separation strategy two times. First,

Presenter plays the separation strategy for ω rounds in the region
[
0, 1 + ε

4

]
pushing

to the right colors not in X . Let Y1 be the set of ω′ right-most intervals from this first
separation. Let Y1 denote the set of colors used by Algorithm to color Y1. Then, Presenter

7

ω

separation phase
width: ω − ω′

M + ε′

final phase
width: ω − ω′

colors: |Z| = ω − ω′
separation phase
width: ω − ω′

separation phase
width: ω′

colors: |Y1| = ω′

initial phase
width: ω′

colors: |X | = αω′ − δ
ω′

separation phase
width: ω′

colors: |Y2| = ω′

M1 + ε
4

1 + ε
4

M + 2 + ε

Figure 3. Strategy construction in Lemma 14

plays the separation strategy for ω rounds in the region
[
M + 1 + 3ε

4
,M + 2 + ε

]
pushing

to the left colors not in X ∪Y1. Let Y2 be the set of ω′ left-most intervals from this second
separation. Let Y2 denote the set of colors used by Algorithm to color Y2.

Let r be the left-most right end-point of an interval in Y1. Let l be the right-most left
end-point of an interval in Y2. In the final phase Presenter introduces ω − ω′ times the
same interval [r, l].

The presented set of intervals is clearly ω-colorable and Algorithm used at least |X |+
|Y1| + |Y2| + |Z| = αω′ − δ + ω′ + ω′ + ω − ω′ =

(
2− 1

α+2

)
ω − o(ω) many colors. The

longest interval presented has length at most M + ε, and all intervals are contained in
[0,M + 2 + ε]. Thus, we have constructed a

〈
2− 1

α+2
,M + ε,M + 2 + ε

〉
-schema.

�

Corollary 15. There is an 〈αn, 2n− 1 + ε, 2n+ 1 + ε〉-schema, for every n ∈ N+ and
every ε > 0, where

αn =

(√
3− 3

)(√
3− 2

)n
+
(√

3 + 3
)(
−
√
3− 2

)n
(√

3− 1
)(√

3− 2
)n

+
(√

3 + 1
)(
−
√
3− 2

)n .

Proof. The argument is similar to Corollary 12, but now we solve the recurrence equation
α0 = 1, αn+1 = 2− 1

αn+2
. �

Note that, similarly to Observation 13, one could already use Corollary 15 to get a
lower bound arbitrarily close to limn→∞ αn =

√
3 for the asymptotic competitive ratio of

any online algorithm that work for all σ > 1. Nonetheless in Sect. 3.4 we prove a stronger
5/2 lower bound.

Theorem (Reminder of Theorem 4). For every σ > 1 there is no online algorithm for
σ-interval coloring with the asymptotic competitive ratio less than 5/3.

Proof. Observe that, for n = 1, Corollary 15 gives a
〈
5
3
, 1 + ε, 3 + ε

〉
-schema. Thus, for

any δ > 0, there is an ω0 such that for each ω > ω0 there is a strategy for Presenter that
presents intervals of length in [1, 1 + ε] and forces Algorithm to use

(
5
3
− δ
)
· ω colors on

an ω-colorable set of intervals. �

3.3. The 7/4 Lower Bound.
8

ω

separation phase
width: ω − ω′

2M + ε′

final phase
width: ω − ω′

colors: |Z| = ω − ω′
separation phase
width: ω − ω′

separation phase
width: ω′

colors: |Y1| = ω′

initial phase
width: ω′

colors:
|X1| = αω′ − δ

initial phase
width: ω′

colors:
|X2| = αω′ − δ

ω′
separation phase
width: ω′

colors: |Y2| = ω′

M M1 + ε
6

1 + ε
6

2M + 2 + ε

Figure 4. Lemma 16, Case 1: |C2 r C1| > ω
2α+2

ω

separation phase
width: ω − ω′

2M + ε′

pre-final phase
width: ω′

final phase
width: ω − ω′

separation phase
width: ω − ω′

separation phase
width: ω′

colors: |Y1| = ω′

initial phase
width: ω′

colors:
|X1| = αω′ − δ

initial phase
width: ω′

colors:
|X2| = αω′ − δ

ω′
separation phase
width: ω′

colors: |Y2| = ω′

M M1 + ε
6

1 + ε
6

2M + 2 + ε

Figure 5. Lemma 16, Case 2: |C2 r C1| < ω
2α+2

Lemma 16. If there is an 〈α, σ,M〉-schema, then there is a
〈
2− 1

2α+2
, 2M + ε, 2M + 2 + ε

〉
-

schema for every ε > 0.

Proof. The proof of this lemma is a bit more complicated than the previous ones, as we
now have two initial phases, two separation phases and a strategy branching, see Fig. 4
and Fig. 5. Take arbitrary ω ∈ N+, and let ω′ =

⌊
ω
α+1

⌋
. Let S be an 〈ω′, αω′ − δ, σ,M〉-

strategy for some δ = o(ω′).
In the initial phase, Presenter uses strategy S twice: first, inside interval

[
1 + ε

3
,M + 1 + ε

3

]
,

and then inside interval
[
M + 1 + 2ε

3
, 2M + 1 + 2ε

3

]
. Algorithm uses C = αω′ − δ colors

in each of these games. We get a set of colors X1 used by Algorithm in the first game,
and a set of colors X2 used by Algorithm in the second game. Note that X1 ∩ X2 might
be non-empty.

In the separation phase, Presenter plays the separation strategy two times. First, Pre-
senter plays the separation strategy for ω rounds in the region

[
0, 1 + ε

6

]
pushing to the

right colors not in X1. Let Y1 be the set of ω′ right-most intervals from the first separation
phase. Let Y1 denote the set of colors used by Algorithm to color Y1. Then, Presenter

9

plays the separation strategy for ω rounds in the region
[
2M + 1 + 5ε

6
, 2M + 2 + ε

]
push-

ing to the left colors not in X2. Let Y2 be the set of ω′ left-most intervals from the second
separation phase. Let Y2 denote the set of colors used by Algorithm to color Y2. Let r be
the left-most right end-point of an interval in Y1. Let l be the right-most left end-point
of an interval in Y2.

There are two cases in the final phase. Let C1 := X1∪Y1, and analogously C2 := X2∪Y2.
We have that |C1| = |C2| = (α + 1)ω′ − δ = ω − o(ω).
Case 1: If |C2 r C1| > ω

2α+2
, then Presenter introduces ω − ω′ times the same interval

[r, l].
Each interval introduced in the final phase intersects with all intervals from both initial

phases and all intervals in Y1 ∪ Y2. Thus, Algorithm is forced to use |C1 ∪ C2|+ ω − ω′ =
|C1|+ |C2 r C1|+ ω − ω′ > ω − o(ω) + α+ 1

2

α+1
ω =

(
2− 1

2α+2

)
ω − o(ω) colors in total.

Case 2: If |C2 r C1| < ω
2α+2

, then Presenter introduces ω′ intervals, all of them having
endpoints [M + 1 + 5ε/12, l]. Let Q be the set of colors used by Algorithm in this pre-
final phase. We have C2 ∩ Q = ∅, and we assumed that |C2 r C1| 6 ω

2α+2
, thus we have

|Qr C1| > ω
2α+2

, and now we are in the case 1 with C2 → Q, see Fig. 5.
The longest interval introduced by Presenter in both cases has length strictly less than

2M + ε, and the whole game is played in the region [0, 2M + 2 + ε]. �
Corollary 17. There is an 〈αn, 3 · 2n − 4 + ε, 3 · 2n − 2 + ε〉-schema, for every n ∈ N+

and every ε > 0, where

αn =

(√
7− 4

)(√
7− 3

)n
+
(√

7 + 4
)(
−
√
7− 3

)n
(√

7− 1
)(√

7− 3
)n

+
(√

7 + 1
)(
−
√
7− 3

)n .

Proof. The argument is similar to Corollaries 12 and 15, but now we solve the recurrence
equations α0 = 1, αn+1 = 2 − 1

2αn+2
, and M0 = 1, Mn+1 = 2Mn + 2, σ0 = 1, σn+1 =

2Mn. �
Note that, similarly to Observation 13, one could already use Corollary 17 to get a

lower bound arbitrarily close to limn→∞ αn = 1+
√
7

2
for the asymptotic competitive ratio

of any online algorithm that work for all σ > 1. Nonetheless in Sect. 3.4 we prove a
stronger 5/2 lower bound.

Theorem (Reminder of Theorem 5). For every σ > 2 there is no online algorithm for
σ-interval coloring with the asymptotic competitive ratio less than 7/4.

Proof. Observe that, for n = 1, Corollary 17 gives a
〈
7
4
, 2 + ε, 4 + ε

〉
-schema. For every

δ > 0, there is an ω0 such that for each ω > ω0 there is a strategy for Presenter that
presents intervals of length in [1, 2 + ε] and forces Algorithm to use

(
7
4
− δ
)
· ω colors on

an ω-colorable set of intervals. �
3.4. The 5/2 Lower Bound. Before we present our main negative result, we need to
prove two simple combinatorial lemmas.

Lemma 18. Let γ ∈ [0, 1]. For every four sets X1, . . . , X4, each of size k, if their
intersection is small:

∣∣⋂4
i=1Xi

∣∣ 6 (1− γ) · k, their sum is large:
∣∣⋃4

i=1Xi

∣∣ > 3+γ
3
· k.

Proof. Each element which belongs to the sum but does not belong to the intersection
can belong to at most three sets. Thus, we have

4 ·
(
k −

∣∣∣∣∣
4⋂

i=1

Xi

∣∣∣∣∣

)
6 3 ·

(∣∣∣∣∣
4⋃

i=1

Xi

∣∣∣∣∣−
∣∣∣∣∣

4⋂

i=1

Xi

∣∣∣∣∣

)
,

10

and so

(3 + γ) · k 6 4k −
∣∣∣∣∣

4⋂

i=1

Xi

∣∣∣∣∣ 6 3 ·
∣∣∣∣∣

4⋃

i=1

Xi

∣∣∣∣∣.

�
Lemma 19. Let γ ∈ [0, 1], and X1, . . . , X4n be a family of 4n sets, each of size k. Then,
either ∣∣∣∣∣

4n⋃

i=1

Xi

∣∣∣∣∣ >
(
3 + γ

3

)n
k,

or the sequence 1, 2, . . . , 4n can be covered with four disjoint intervals [l1, r1], . . . , [l4, r4],
l1 = 1, li+1 = ri + 1, ri = 4n, such that for Yi =

⋃ri
j=li

Xj the intersection of Yi’s is large:

|Y1 ∩ Y2 ∩ Y3 ∩ Y4| > (1− γ) · k.
Proof. Consider n+1 families of sets defined as follows: X 0

i := Xi for every i ∈ [4n], and
X j
i :=

⋃4i
l=4i−3X j−1

l for every j ∈ [n] and i ∈ [4n−j]. See Fig. 6.

X 2
1

X1 X2 X3 X4

X 1
1

X5 X6 X7 X8

X 1
1

X9 X10 X11 X12

X 1
1

X13 X14 X15 X16

X 1
1

Figure 6. X j
i sets in Lemma 19

If for some i, j we have |⋂4i
l=4i−3X j

l | > (1− γ) · k, then we are done. Thus, we assume
that ∀i,j : |

⋂4i
l=4i−3X j

l | < (1− γ) · k. Let % := 3+γ
3
∈
[
1, 4

3

]
. We prove that ∀j,i : |X j

i | >
%jk, by induction on j. For j = 0 the statement is obvious because ∀i : |X 0

i | = |Xi| = k =
%0k. For j+1 and arbitrary i, let k′ = %jk and observe that |X j

4i−3|, . . . , |X j
4i| > %jk = k′.

We may ignore some elements of those sets and assume that |X j
4i−3| = . . . = |X j

4i| = k′,
moreover we assumed that |X j

4i−3 ∩ . . . ∩ X j
4i| < (1− γ)k = 1−γ

%j
%jk = (1− γ′)k′, where

γ′ ∈ [0, 1] and γ′ > γ. We apply Lemma 18 and get |X j
4i−3 ∪ . . . ∪ X j

4i| > 3+γ′

3
k′. Thus,

|X j+1
i | > 3+γ′

3
k′ > 3+γ

3
k′ = %k′ = %j+1k. �

Lemma 20. If there is an 〈α, σ,M〉-schema, then for every ε > 0 and for every γ ∈ (0, 1),
there is a

〈
5
4
+ 1

2
(1− γ)α, 4nM + ε, 4nM + ε

〉
-schema, for some n := n(γ).

Proof. Let ω ∈ N+, and ω′ =
⌊
ω
2

⌋
. Let S be an 〈ω′, αω′ − δ, σ,M〉-strategy for some

δ = o(ω′).
In the initial phase, Presenter uses strategy S inside each of 4n disjoint intervals,[

(i− 1)(M + ε
4n
), (i− 1)(M + ε

4n
) +M

]
for each i ∈ [4n]. See Fig. 7. Algorithm uses

C = αω′ − δ colors in each of these games. Let Xi denote the set of C colors used by
Algorithm in the i-th game. Let X denote the set of all colors used in the initial phase,
i.e., X =

⋃
i∈[4n]Xi.

We apply Lemma 19 to the family X1, . . . ,X4n and get that either the union of these
sets has at least

(
3+γ
3

)n · C elements, or we get four disjoint consecutive subfamilies
Y1, . . . ,Y4, Yi =

⋃ri
j=li
Xj such that the size of the intersection Y1 ∩ Y2 ∩ Y3 ∩ Y4 has at

least (1− γ) · C elements.
11

Case 1: If the size of the union |X | is at least
(
1 + γ

3

)n ·C, then Presenter introduces ω′
intervals, all of them having endpoints [0, 4nM + ε]. See Fig. 7. Each interval introduced
in the final phase intersects with all intervals introduced in the initial phase. Thus,
Algorithm is forced to use at least |X | + ω′ > 1

2

((
1 + γ

3

)n
α + 1

)
ω − o(ω) colors in total.

Easy calculation shows that for γ ∈ (0, 1), α ∈ [1, 3] and for any n > log1+ γ
3
(5/2− γ),

we have 1
2
+ 1

2

(
1 + γ

3

)n
α > 5

4
+ 1

2
(1− γ)α.

X1 X2 X3 X4 X5
. . . X4n

final phase

� -
4nM + ε

6
?

ω′

6

?

ω

Figure 7. Case 1: |X | is large

Case 2: The size of the intersection |Y1 ∩ . . . ∩ Y4| is at least (1− γ) ·C. Let Y = Y1∩
Y2∩Y3∩Y4 denote the colors that appear in all four parts of the initial phase. Presenter
introduces set Z1 of ω′ intervals, all of them having endpoints

[
0, r1+l2

2

]
. Intervals in Z1

cover all intervals contributing to Y1 and are disjoint with intervals contributing to Y2.
See Fig. 8. Let Z1 be the set of colors used by Algorithm to color Z1.

Then Presenter introduces set Z2 of ω′ intervals, all of them having endpoints
[
r3+l4

2
, 4nM + ε

]
.

Intervals in Z2 cover all intervals contributing to Y4 and are disjoint with intervals con-
tributing to Y3. Let Z2 be the set of colors used by Algorithm to color Z2.

Clearly, |Z1| = |Z2| = ω′, and Z1 ∩ Y = Z2 ∩ Y = ∅. Now we distinguish two subcases
depending on the size of the set Z2 r Z1.

Case 2.1: If |Z2 r Z1| > 1
4
ω, then Presenter introduces set W of ω′ intervals, all of

them having endpoints
[
3r1+l2

4
, r3+3l4

4

]
. These intervals cover all the intervals contributing

to Y2, and Y3, intersect all intervals in Z1, and Z2. Let W be the set of colors used by
Algorithm to color W . By the definition, we have W ∩ Y = W ∩ Z1 = W ∩ Z2 = ∅.
Algorithm was forced to use |W|+ |Z1|+ |Z2 r Z1|+ |Y| >

(
1
2
+ 1

2
+ 1

4

)
ω+ 1

2
(1− γ)αω−

o(ω) =
(
5
4
+ 1

2
(1− γ)α

)
ω − o(ω) colors in total. See Fig. 8.

Y1 Y2 Y3 Y4

Z1 Z2

W

� -
4nM + ε

?

6

ω

?

6ω′

?

6ω′

Figure 8. Case 2.1: |Y| is large and |Z2 r Z1| > 1
4
ω

Case 2.2: If |Z2 r Z1| < 1
4
ω, then let Z = Z1 ∩ Z2 and observe that |Z| >

⌊
ω
4

⌋
.

Presenter introduces set W1 of ω′ intervals, all of them having endpoints
[
3r1+l2

4
, r2+3l3

4

]

and set W2 of ω′ intervals, all of them having endpoints
[
3r2+l3

4
, r3+3l4

4

]
. Let W be the

set of colors used by Algorithm to color intervals in W1 ∪W2. We have that |W| = 2ω′,
and W ∩ Y = W ∩ Z = ∅. Algorithm was forced to use |W| + |Z| + |Y| >

(
1 + 1

4

)
ω +

1
2
(1− γ)αω − o(ω) =

(
5
4
+ 1

2
(1− γ)α

)
ω − o(ω) colors in total. See Fig. 9.

12

Y1 Y2 Y3 Y4

Z1 Z2

W2

W1

� -
4nM + ε

?

6

ω

?

6ω′

?

6ω′
?

6ω′

Figure 9. Case 2.2: |Y| is large and |Z2 r Z1| < 1
4
ω

�
Corollary 21. There is an an

〈
αn, 4

nf(γ) + ε, 4nf(γ) + ε
〉
-schema, for every n ∈ N+,

every ε > 0, and every γ ∈ (0, 1), where

αn =
5

2

1

1 + γ
− (3− 2γ)

2(1 + γ)

(
1− γ
2

)n
, f(γ) =

⌈
log
(
5
2
− γ
)

log
(
1 + γ

3

)
⌉
.

Proof. The argument is similar to Corollaries 12, 15, and 17, but now we solve the
recurrence equations α0 = 1, αn+1 = 5

4
+ 1

2
(1− γ)αn for competitive ratio, and L0 = 1,

Ln+1 = 4f(γ)Ln, an = Ln for interval and region lengths. �
Theorem (Reminder of Theorem 6). For every ε > 0 there is σ > 1 such that there is
no online algorithm for σ-interval coloring with the asymptotic competitive ratio 5/2− ε.
Proof. Setting γ small enough and n large enough, Corollary 21 gives us a

〈
5
2
− ε

2
, σ, σ

〉
-

schema, for some value of σ. Thus, there is ω0 such that for each ω > ω0 there is a
strategy for Presenter that presents intervals of length at most σ and forces Algorithm
to use

(
5
2
− ε
)
· ω colors on an ω-colorable set of intervals, and the theorem follows. �

4. Open Problems

There are still large gaps between the best known lower and upper bounds for the
optimal competitive ratios for online σ-interval coloring problems. Figure 10 summarizes
these bounds. It would be interesting to close the gap even for a single specific σ. For
example, for σ = 3/2 the optimal online algorithm has the competitive ratio somewhere
between 5/3 and 5/2.

Finally, let us conjecture that the lower bound of Theorem 6 is tight.

Conjecture 22. There is a 5/2-competitive online algorithm for σ-interval coloring, for
every σ > 1.

References

[1] Seymour Benzer. On the topology of the genetic fine structure. Proceedings of the National Academy
of Sciences of the United States of America, 45(11):1607–1620, 1959.

[2] Leah Epstein and Meital Levy. Online interval coloring and variants. In ICALP 2005: 32nd In-
ternational Colloquim on Automata, Languages and Programming, Lisbon, Portugal, July 2005.
Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 602–613, 2005.

[3] P. C. Fishburn and R. L. Graham. Classes of interval graphs under expanding length restrictions.
Journal of Graph Theory, 9(4):459–472, 1985.

[4] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Math-
ematics, Vol 57). Elsevier, 2 edition, 2004.

13

[5] Magnús M. Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms, 23(2):265–280,
1997.

[6] Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theoretical
Computer Science, 130(1):163–174, 1994.

[7] K. Junosza-Szaniawski, P. Rzążewski, J. Sokół, and K. Węsek. Online coloring and l(2,1)-labeling
of unit disk intersection graphs. SIAM Journal on Discrete Mathematics, To appear.

[8] H.A. Kierstead, David A. Smith, and W.T. Trotter. First-fit coloring on interval graphs has perfor-
mance ratio at least 5. European Journal of Combinatorics, 51:236–254, 2016.

[9] Henry A. Kierstead and William T. Trotter. An extremal problem in recursive combinatorics. In
12th Southeastern Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, LA,
USA, March 1981. Proceedings, vol. II, volume 33 of Congressus Numerantium, pages 143–153, 1981.

[10] C. Lekkeikerker and J. Boland. Representation of a finite graph by a set of intervals on the real line.
Fundamenta Mathematicae, 51(1):45–64, 1962.

[11] N. S. Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval graphs. Order,
25(1):49–53, 2008.

(G. Gutowski, P. Mikos, A. Polak) Theoretical Computer Science Department, Faculty of
Mathematics and Computer Science, Jagiellonian University, Kraków, Poland

E-mail address: {gutowski,mikos,polak}@tcs.uj.edu.pl

(K. Junosza-Szaniawski, J. Sokół) Faculty of Mathematics and Information Science, War-
saw University of Technology, Poland

E-mail address: {k.szaniawski,j.sokol}@mini.pw.edu.pl

1 2 ∞

σ

3

3
2

2
5
3

7
4

5
2

Theorem 3︷ ︸︸ ︷ Kierstead-Trotter [9]︷ ︸︸ ︷

︸ ︷︷ ︸
Theorem 4

︸ ︷︷ ︸
Theorem 5

︸ ︷︷ ︸
Theorem 6

Epstein-Levy [2]

ratio

Figure 10. Current bounds for competitive ratio
14

