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Objectives: Few single latency-reversing agents (LRAs) have been
tested in vivo, and only some of them have demonstrated an effect,
albeit weak, on the decrease of latent reservoir. Therefore, other
LRAs and combinations of LRAs need to be assessed. Here, we
evaluated the potential of combined treatments of therapeutically
promising LRAs, disulfiram and romidepsin.

Setting and Methods: We assessed the reactivation potential of
individual disulfiram or simultaneous or sequential combined treat-
ments with romidepsin in vitro in latently infected cell lines of
T-lymphoid and myeloid origins and in ex vivo cultures of CD8+-
depleted peripheral blood mononuclear cells isolated from 18 HIV-1+

combination antiretroviral therapy–treated individuals.

Results: We demonstrated heterogeneous reactivation effects of
disulfiram in vitro in various cell lines of myeloid origin and no
latency reversal neither in vitro in T-lymphoid cells nor ex vivo,
even if doses corresponding to maximal plasmatic concentration or
higher were tested. Disulfiram+romidepsin combined treatments
produced distinct reactivation patterns in vitro. Ex vivo, the
combined treatments showed a modest reactivation effect when
used simultaneously as opposed to no viral reactivation for the
corresponding sequential treatment.

Conclusions: Exclusive reactivation effects of disulfiram in
myeloid latency cell lines suggest that disulfiram could be a potential
LRA for this neglected reservoir. Moreover, distinct reactivation
profiles pinpoint heterogeneity of the latent reservoir and confirm
that the mechanisms that contribute to HIV latency are diverse.
Importantly, disulfiram+romidepsin treatments are not potent ex vivo
and most likely do not represent an effective drug combination to
achieve high levels of latency reversal in vivo.
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INTRODUCTION
Combination antiretroviral therapy (cART) has pro-

found health benefits for people with HIV, but cART is not
curative and patients must stay on therapy indefinitely.
Persistence during cART of latently infected cells containing
integrated, transcriptionally silent but replication-competent
proviruses is a major hurdle for HIV-1 eradication.1 Although
many cells may contribute to the latent reservoirs, including
monocytes and monocyte-derived macrophages (reviewed in
Refs. 2,3), the best characterized one is a small population of
long-lived HIV-1–infected resting memory CD4+ T cells,
maintained throughout patient’s life by homeostatic pro-
liferation.4 The absence of viral gene expression in latently
infected cells renders the virus imperceptible to host immune
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response. However, various cellular stimuli can induce the
latent reservoirs, allowing for HIV-1 transcription and sub-
sequent production of replication-competent virus,5,6 which
can represent one potential source of rebound of viremia after
cART interruption.7 One proposed strategy for eliminating
the latent reservoir is to pharmacologically stimulate HIV-1
gene expression in latently infected cells, rendering these cells
susceptible to cytolytic T lymphocytes or viral cytopathic
effects while maintaining cART to prevent new spreading
infection.8 Small molecule latency-reversing agents (LRAs)
with potential therapeutical application as shock agents have
been identified including antialcoholism drug disulfiram
(DSF)9,10 and histone deacetylase inhibitors (HDACIs) such
as SAHA, panobinostat, and romidepsin.11–13 Such com-
pounds also include protein kinase C agonists (prostratin,
bryostatin, and ingenols),14,15 bromodomain and extratermi-
nal domain inhibitors (JQ1, I-BET, I-and BET151),6 histone
methyltransferases inhibitors (chaetocin and BIX0194),16

DNA methyltransferase inhibitors or demethylating agents
(5-AzadC),5 and toll-like receptor 7 agonists (GS-9620).17

DSF has been used for the treatment of chronic alcoholism
for more than 60 years.18 In vitro studies showed that DSF
reactivates HIV in latently infected cell lines of myeloid
but not T-lymphoid origin19 and in primary Bcl-2–transduced
CD4+ T-cell model of latency.20 A pilot clinical study using
an FDA-approved dose showed no overall effect on plasma
HIV RNA during DSF administration, but a transient
increase in plasma HIV RNA was noted in a post hoc
analysis in some patients.9 Importantly, a dose-escalation
study showed very good safety profile of DSF, a clear
dose-dependent effect of disulfiram on HIV transcription;
however, a small effect on plasma HIV-1 RNA only for the
highest dose was observed.10 In addition to antilatency
clinical trials using DSF, several trials using HDACIs
have been reported in the HIV field.12,13 Romidepsin, an
HDACI, was also evaluated in vivo and was shown to be the
most potent latency activator tested in clinical trials to
date.13 However, despite its potent effect, no decrease in the
reservoir size was observed. Altogether, these studies using
LRAs are encouraging but question the efficacy of LRAs
used alone to reduce the size of the HIV-1 reservoirs.
Combination of different classes of LRAs targeting different
mechanisms of latency can exhibit synergistic effect (ie,
result in a higher reactivation level than the sum of the
reactivations produced by each compound individually) in
reactivation of HIV expression in latently infected cells. We
and others have demonstrated proof of concepts for the
coadministration of 2 different classes of LRAs5,6,21 as
a therapeutic perspective to decrease the pool of latent HIV-1
reservoirs in the presence of efficient cART.

In this study, we turned our attention to 2 therapeu-
tically promising LRAs, DSF and romidepsin, since the
former showed excellent safety profile and the latter potent
reactivation in vivo. We evaluated the reactivation poten-
tial of individual and combined treatments of DSF and
romidepsin in multiple in vitro cellular latency models and
in ex vivo cultures of CD8+-depleted peripheral blood
mononuclear cells (PBMCs) isolated from HIV+ aviremic
cART-treated individuals.

RESULTS

Heterogeneous Effects of DSF on HIV
Reactivation In Vitro in Latently Infected
Cell Lines

We first determined optimal concentration of DSF in
terms of both HIV-1 reactivation potential and effect on the
cellular viability. We measured induction of HIV-1 p24 capsid
protein production and cellular metabolic activity in well-
studied HIV-1 latency cellular model, promonocytic U1 cell
line. Increasing doses of DSF for 24, 48, and 72 hours
augmented p24 antigen level in the cell supernatants in a dose-
and time-dependent manner from 5 to 50 mM (Fig. 1A F1). We
also assessed the effect of the increasing doses of DSF on cell
viability as measured by WST-1 assay that reflects the cell
metabolic activity and cell proliferation. We observed dose-
and time-dependent effect on cellular viability for DSF doses
ranging from 20 to 50 mM (Fig. 1B). We therefore determined
that 10 mM of DSF for 48 hours was optimal in terms of both
reactivation effect and effect on cellular viability.

We next assessed the reactivation effect of increasing
doses of DSF in 2 other monocytic-derived cell lines
containing latent HIV-1 proviruses, that is, THP89GF and
CHME-5/HIV microglial cells. These cell lines containing
a reporter GFP were treated with increasing doses of DSF for
24, 48, and 72 hours (Figs. 1C, E, respectively). In
THP89GFP cells, 20 mM of DSF for 24 hours was optimal
in terms of both reactivation effect and effect on cellular
viability. Interestingly, in the CHME-5/HIV cell line, we
observed 2 peaks of reactivation (at 0.5 and 10 mM), and the
reactivation effect was the most pronounced after 24-hour
stimulation with strong decrease in reactivation after 48 and
72 hours of DSF treatment (Fig. 1E). Moreover, cytotoxicity
was observed from 20-mM DSF (Fig. 1F).

Finally, we also assessed the reactivation effect of
increasing doses of DSF in a T-lymphoid Jurkat cell–based
latency model, the J-Lat 9.2 cell line treated for 24, 48, and 72
hours (Fig. 1G). We observed no induction of HIV-1 gene
expression in this cell line at any DSF concentration used and
at any time-point tested as compared to TNFalpha treatment
(see Figure 1, Supplemental Digital Content, http://links.lww.
com/QAI/B273). DSF presented no negative effect on cellular
viability for concentrations of DSF up to 20 mM treated for 24
and 48 hours (Fig. 1H). In addition, no HIV reactivation
could be observed in 2 other Jurkat-based latency model cell
lines, that is, A2 and A72 cells (see Figure 2, Supplemental
Digital Content, http://links.lww.com/QAI/B273). Impor-
tantly, Doyon et al19 has also reported that DSF reactivates
HIV-1 expression in the U1 but not in Jurkat-based cell line
latency models. They have shown that DSF significantly
reduces phosphatase and tensin homolog (PTEN) protein
levels in U1 cells. They have observed that Jurkat cell–based
models of latency do not express PTEN, explaining the lack
of DSF effect on HIV-1 expression in these cell lines.
Notably, we could not observe any expression levels of
PTEN protein neither in J-Lat 9.2 nor in monocytic-derived
U1 and THP89GFP cells (see Figure 3, Supplemental Digital
Content, http://links.lww.com/QAI/B273), but we detected
PTEN in CHME-5/HIV microglial cell line.
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FIGURE 1. Dose- and time-dependent effect of DSF on HIV-1 production and cellular viability in vitro. Cells were mock-treated or
treated with increasing doses of DSF as indicated. At 24, 48, and 72 hours after treatment, either CA-p24 ELISA production in cell
supernatants (A) was measured or viral protein expression was analyzed by FACS (C, E, and G). In addition, cellular viability
was assessed by WST-1 assay that reflects cell metabolic activity, proliferation, and cytotoxicity (B, D, F, and H). Results with the
mock-treated cells were arbitrary set at a value of 1 (A) or 1% of GFP (+) cells (C, E, and G) or 100% (B, D, F, and H). Mean values
and SEs of the mean values from duplicate samples are indicated. One representative experiment from 3 is represented.
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In conclusion, our results demonstrated that the in vitro
reactivation effect of DSF was heterogeneous with distinct
reactivation patterns within myeloid-derived latency cell lines
and no reactivation was observed in T-lymphocytic–based
latency cell lines.

Distinct In Vitro Reactivation Patterns After
DSF+Romidepsin Combined Treatments in
Myeloid HIV Latently Infected Cell Lines

We next investigated whether DSF could synergistically
reactivate HIV-1 expression when combined with romidepsin
in either U1 or THP89GFP or CHME-5/HIV cell lines. Two
compounds synergize when their combination produces higher
effect than the sum of effects arising from separate treatments.
We tested DSF at 0.5, 10, and 20 mM (concentrations we
determined to be optimal doses in latency models we

investigated). In addition, we also investigated DSF at 2 and
5 mM. Romidepsin was tested at 2 concentrations 0.0175 and
0.04 mM that correspond to dose previously established by our
laboratory5 and to plasmatic concentration achieved in patients
after romidepsin administration,13 respectively.

Since, in U1 cells, we observed time-dependent effect
of DSF with optimal timing at 48 hours, we investigated both
simultaneous and sequential DSF+romidepsin combined
treatments. We compared a simultaneous treatment in which
DSF and romidepsin were added together for 48 hours with
a sequential treatment in which 24-hour DSF pretreatment
was followed by a 24-hour romidepsin induction, correspond-
ing to a total of 48-hour DSF treatment. By extracellular p24
ELISA assays, we observed that simultaneous DSF+romidep-
sin treatments exhibited overall only additive effects (Fig. 2A F2,
max. fold synergy = 1.1) as compared to sequential treatment
that produced synergistic effects (Fig. 2B, max. fold synergy

FIGURE 2. Comparison of simultaneous DSF+romidepsin combinedAQ:6 treatments with its corresponding sequential treatments in
U1 cells. Cells were mock-treated or treated with DSF or romidepsin alone or in combinations as indicated. Regarding sequential
treatment, at 24 hours after romidepsin treatment and 48 hours after DSF treatment, viral production was estimated by measuring
CA-p24 antigen concentration in culture supernatants. Regarding simultaneous treatment, at 48 hours after DSF and romidepsin
treatments, viral production was estimated by measuring CA-p24 antigen concentration in culture supernatants. The mock-
treated value was arbitrarily set at a value of 1. Mean values and SEs of the mean values from triplicate samples are indicated. In
addition, cellular viability was assessed by WST-1 assay that reflects cell metabolic activity, proliferation, and cytotoxicity. For each
combinatory treatment, the fold synergy was calculated by dividing the effect observed after cotreatments by the sum of the
effects obtained after the individual treatments.
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= 3.4). Of note, 48-hour romidepsin treatment was very toxic
(90% of reduction in cellular viability) as compared to 24-
hour romidepsin treatment (60% of reduction in cellular
viability) (Figs. 2C, D, respectively). Worth mentioning, we
observed very high synergistic reactivation effects of sequen-
tial treatments in which DSF was combined with some other
HDACIs (see Figure 4A, Supplemental Digital Content,
http://links.lww.com/QAI/B273) and other classes of LRAs
(see Figure 4B, Supplemental Digital Content, http://links.
lww.com/QAI/B273).

Next, we evaluated whether DSF could synergize with
romidepsin in THP89GFP and CHME-5/HIV cell lines. We
investigated only the simultaneous combined treatments in
these cell lines, since DSF reactivation effect was only observed
after 24 hours of treatment. Regarding THP89GFP cells, we
observed synergistic increase in the GFP-positive cells after
simultaneous cotreatments of 20-mM DSF with either romidep-
sin at 0.0175 mM or at 0.04 mM (Fig. 3AF3 , fold synergy = 2.1
and fold synergy = 2.3, respectively). Marginal effects on
cellular viability were observed (Fig. 3B). In case of CHME-5/
HIV cells, we observedAQ:5 only modest synergistic increase in
the GFP-positive cells after simultaneous DSF+romidepsin

combined treatments as compared to individual treatments
(Fig. 3C, fold synergy ,2, see Table S1, Supplemental Digital
Content, http://links.lww.com/QAI/B273). Cytotoxicity was
observed for 20-mM DSF and the DSF+romidepsin combined
treatments (Fig. 3D).

In conclusion, our results demonstrated that DSF+ro-
midepsin combined treatments produced various synergistic
effects, and the highest synergistic effects were observed in
U1 cells after sequential DSF+romidepsin treatment.

Simultaneous But Not Sequential
DSF+Romidepsin Treatments Lead to
Moderately Higher HIV-1 Recovery Than the
Individual Drug Treatments in CD8+-Depleted
PBMCs From cART-Treated HIV+

Aviremic Individuals
To address the reactivation potential of the simulta-

neous and sequential DSF+romidepsin treatments in ex vivo
cultures, we firstly evaluated the cytotoxic effects of those
treatments on cells from healthy donors. We observed that

FIGURE 3. DSF+romidepsin simultaneous treatments moderately induce HIV-1 as compared to drugs alone in THP89GFP and
CHME-5/HIV cell lines. The CHME-5/HIV microglial cells were mock-treated, treated with DSF, or romidepsin alone or in com-
bination as indicated. At 24 hours after treatment, cells were analyzed by flow cytometry to quantify the proportion of cells
expressing GFP. Mean values and SEs of the mean values from duplicate samples are indicated. One representative experiment
from 3 is represented.
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DSF alone was not toxic and the combined treatments
produced cytotoxic effects ranging from 20% to 60% as
assessed by cellular viability tests (see Figure 5, Supplemental
Digital Content, http://links.lww.com/QAI/B273). Then,
CD8+-depleted PBMCs isolated from 18 cART-treated avire-
mic HIV-1+ patients were mock-treated, treated with anti-
CD3+anti-CD28 antibodies as a positive control for global
T-cell activation or with indicated compounds added in
a simultaneous or sequential manner alone or in combination
(Fig. 4F4 and Table S1, Supplemental Digital Content, http://
links.lww.com/QAI/B273). HIV-1 genomic RNA concentra-
tions in culture supernatants were quantified after 6 days of
drug(s) treatment (T1 Table 1). We observed in mock-treated
cultures a recovery in viral genomic RNA (mean of 928
HIV-1 RNA copies/mL) that could be explained by activation
of HIV-infected cells during the purification procedure or
during the course of experiment. Importantly, we observed
that DSF at 2 mM (that corresponds to plasmatic concentra-
tion reported by Elliot et al10) and DSF at 5 mM (that has been
chosen by us in this ex vivo study) showed no additional
increase in mean HIV-1 RNA levels as compared to mock-
treated cells (597 HIV-1 RNA copies/ml and 646 HIV-1 RNA
copies/mL, respectively). However, these changes were not
statistically significant (see Table S2, Supplemental Digital
Content, http://links.lww.com/QAI/B273). Furthermore, 2
doses of romidepsin were selected for the ex vivo study:
a dose of 0.0175 mM that was determined in5 and a dose of
0.04 mM that corresponds to plasmatic concentration mea-
sured in HIV reactivation clinical trial.13 Romidepsin at
0.0175 and 0.04 mM that was added at day 1 exhibited
statistically significant increases in HIV recovery (mean of
1925 HIV-1 RNA copies/mL and 2546 HIV-1 RNA copies/
mL, respectively, Fig. 4, see Table S2, Supplemental Digital
Content, http://links.lww.com/QAI/B273). Romidepsin at
0.0175 and 0.04 mM that was added at day 3 produced lower

HIV recovery (mean of 1275 HIV-1 RNA copies/mL and
1617 HIV-1 RNA copies/mL, respectively, Fig. 4) that was
not statistically relevant (see Table S2, Supplemental Digital
Content, http://links.lww.com/QAI/B273). Combined simul-
taneous DSF+romidepsin treatments exhibited increases in
extracellular HIV-1 RNA levels that were higher than their
corresponding individual treatments (Fig. 4). Those increases
were statistically significant when compared either with mock
or individual DSF treatments, but no significance could be
observed for comparisons with corresponding individual
romidepsin treatment (see Table S2, Supplemental Digital
Content, http://links.lww.com/QAI/B273). Of note, simulta-
neous combination of 5-mM DSF and 0.04-mM romidepsin
induced the highest mean HIV RNA levels; however, this
recovery was not statistically relevant when compared with
romidepsin individual treatment (Fig. 4 and Table S2,
Supplemental Digital Content, http://links.lww.com/QAI/
B273).

Moreover, sequential DSF+romidepsin treatments did
not exhibit any positive and statistically relevant effects on
extracellular HIV-1 RNA levels (Fig. 4 and Table S2,
Supplemental Digital Content, http://links.lww.com/QAI/
B273).

In addition to the increases in mean extracellular HIV-1
RNA levels, we demonstrated a higher viral production in
several cell cultures after combined treatments (Table 1, see
italicized and bold values).

In conclusion, our results demonstrated that individual
DSF and sequential DSF+romidepsin treatments did not
reactivate HIV from latency ex vivo in CD8+-depleted
PBMCs from HIV+ cART-treated aviremic individuals.
Importantly, individual romidepsin treatments produced
statistically significant HIV recoveries. Moreover, simulta-
neous DSF+romidepsin treatments produced only moderate
beneficial reactivation effects.

FIGURE 4. Simultaneous but not
sequential DSF+romidepsin treatments
leadAQ:7 to moderately higher HIV-1 recovery
than the drugs alone in CD8+-depleted
PBMCs from cART-treated HIV+ aviremic
patients. Ex vivo cultures of CD8+-
depleted PBMCs purified from blood of
18 patients were mock-treated, treated
with anti-CD3+anti-CD28 antibodies
(C+), 2 doses of DSF, and 2 doses of ro-
midepsin alone or in combination as
indicated. Six days after treatment, con-
centrations of extracellular viral RNA (EC
HIV-1 RNA) in culture supernatants were
determined. The results were reported as
the actual HIV RNA copy numbers/ml or
as an estimated value calculated as 50%
of the smallest value when HIV RNA was
not detected to assign a log value.
Dashed line indicates the 300 HIV-1 RNA
copies/ml limit of detection. The mean
values are represented.

Kula et al J Acquir Immune Defic Syndr � Volume 00, Number 00, Month, 2019

6 | www.jaids.com Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc.



TABLE 1. Simultaneous and Sequential DSF+Romidepsin Treatments in CD8+-Depleted PBMCs From cART-Treated HIV+ Aviremic Patients

Patient

Total HIV-1 DNA
(Copies/106 CD8+-
Depleted PBMCs)

LOG Total HIV-1
DNA (Copies/106

CD8+-Depleted
PBMCs) Mock

DSF
2 mM

DSF
5 mM

Simultaneous Sequential

C+
Romi

0.0175 mM

Romi
0.0175 mM +

Romi
0.04 mM

Romi
0.04 mM +

Romi
0.0175 mM

Romi
0.0175 mM +

Romi
0.04 mM

Romi 0.04
mM+

DSF
2 mM

DSF
5 mM

DSF
2 mM

DSF
5 mM

DSF
2 mM

DSF
5 mM

DSF
2 mM

DSF
5 mM

P1 1567 3.20 1601 3884 I 1633 5160 4910 3098 NT NT I I 1173 NT NT NT 2231

P2 789 2.90 I I I 5386 856 1479 817 I I I 1141 810 NT NT NT 15,320

P3 362 2.56 1337 I I 1705 10,690 4302 3798 8320 I 3262 582 616 780 I 1090 16,310

P4 1171 3.07 1235 I 707 3916 6172 2469 5281 NT NT 4301 365 I NT NT NT 95,290

P5 317 2.50 1247 867 1141 1367 1945 398 1713 NT NT 735 736 392 NT NT NT 86,990

P6 308 2.49 720 1321 I I 929 610 685 524 817 I 1615 I I I NT 879

P7 1905 3.28 I I 2614 5317 1022 5990 1395 15,670 6863 3010 7035 4007 5889 2185 NT 64,120

P8 580 2.76 3531 I 635 4619 3323 2825 3190 5437 70,057 517 1484 1833 1617 391 I 22,470

P9 437 2.64 936 I I 2280 1627 757 4166 380 4013 1353 2699 393 362 505 1187 25,850

P10 184 2.26 740 I I 899 477 617 I I I 1310 302 I I 621 NT 3552

P11 595 2.77 524 553 690 655 I I I 580 346 1635 1689 I I 5060 I NT

P12 45 1.65 665 I I I I I I I I I 323 497 634 546 681 1571

P13 427 2.63 992 I 739 I 1882 1438 1587 2690 1081 I I I NT NT NT 57,170

P14 1329 3.12 319 602 775 2282 2725 12,300 5917 2580 3072 3689 2054 730 866 843 392 1,326,000

P15 923 2.97 I I I 688 404 1505 6663 970 3366 708 I I 1473 618 NT 20,390

P16 94 1.97 I 938 1651 I I 372 510 NT NT I 343 693 NT NT NT I

P17 2788 3.45 772 I 1410 3078 5429 8417 5206 6167 12,390 1478 445 2065 5207 3397 NT 49,790

P18 570 2.76 I 828 I I 1567 1246 1495 1795 NT I 1138 629 NT NT NT 2190

Cultures of CD8+-depleted PBMCs purified from blood of 18 patients were mock-treated or treated with anti-CD3+anti-CD28 antibodies (C+), DSF (2 and 5 mM) and romidepsin (0.0175, 0.04 and 0.1 mM) alone, or in
combination as indicated. Six days after treatment, concentrations of genomic viral RNA in culture supernatants were determined, and the values were expressed as HIV-1 RNA copies/ml. Total HIV-1 DNA was measured in cellular
culture and was expressed as HIV-1 DNA copies/106 cells. Values representing higher viral production after combinatory treatment than after single drug treatment are italicized. Values representing reactivation of the virus observed
exclusively after dual treatments are represented in bold. Mean values are represented. “I” indicates below the 300 HIV-1 RNA copies/ml limit of detection. “NT” indicates not tested conditions.
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DISCUSSION
A number of chemical compounds have been identified

as HIV LRAs. DSF has also been studied and brought
forward to clinical trials.9,10 In this report, we evaluated
reactivation potential of DSF alone or combined with
romidepsin in vitro in various latency cell lines of myeloid
and T-lymphocytic origins and ex vivo in CD8+-depleted
PBMCs from HIV+ aviremic cART-treated individuals. We
observed heterogenous DSF reactivation patterns within
myeloid-derived latency cell lines and no reactivation was
observed in Jurkat-based T-cell line, highlighting different
reactivation patterns between models from different cellular
lineage but also between models belonging to the same
cellular lineage. Importantly, several recent studies have
shown that LRAs have limited reactivation spectra, being
effective only in some cell types. For instance, recent work
from Baxter et al22 has demonstrated a heterogeneous
response of CD4+ population to individual LRAs: bryostatin
induced the effector memory CD4+ T-cell reservoir but had
limited effect on the central/transitional memory CD4+ T-cell
compartment, contrasting with similar effects observed with
ingenol. In addition, it has been recently demonstrated by
Chen et al23 that different LRAs reactivate different subsets of
latent proviruses. Moreover, we also observed in a previous
report a great heterogeneity between patients in terms of
reactivation capacity of their ex vivo cell cultures.24 Alto-
gether, these recent works and our findings strongly suggest
that LRAs may have limited and heterogeneous reactivation
spectra in vivo due to cellular and viral heterogeneity of latent
reservoirs and that multiple mechanisms may be involved in
the reactivation of latent HIV. Previously, Doyon et al19 have
investigated the mechanism of DSF action on latent HIV in
U1 and Jurkat-based cell lines and have shown that DSF acts
through the Akt signaling pathway by decreasing PTEN in
U1 cells but not in Jurkat-based cell lines. By contrary, we
could not detect PTEN in U1 cells, questioning the role of this
factor in DSF-mediated HIV reactivation in this cell line and
suggesting a different mechanism. Interestingly, Lin et al25

have shown that DSF treatment results in demethylation of
genes hypermethylated in prostate cancer with subsequent re-
expression of these genes, suggesting that DSF can act as an
epigenetic drug. It remains to be determined whether DSF
could act as epigenetic drug on HIV expression.

Remarkably, we could not observe any reactivation
effect of DSF ex vivo, in CD8+-depleted PBMCs isolated
from HIV+ aviremic cART-treated individuals. This could be
explained at least partially by the fact that most of the HIV-
infected cells in blood are CD4+ T cells with HIV-infected
monocytes being extremely low. Although HIV-1 proviral
DNA is only present in less than 1% of circulating monocytes
(between 0.01% and 1%), these cells are important viral
reservoirs and are responsible for the dissemination of HIV-1
into sanctuaries such as the brain.26

Importantly, in our ex vivo studies, we tested 2- and 5-
mM DSF with the former corresponding to max. plasmatic
concentration from the recent dose-escalation clinical trial.10

This study showed that even if all doses (500, 1000, and 2000
mg) produced an increase at the level of intracellular HIV

RNA, only the highest dose increased the plasma HIV RNA
albeit with very low effect. This effect was extremely modest
and an order of magnitude lower than that noted previously
with HDACI, romidepsin.13 In line with this observation,
Mohammadi et al27 have also previously shown in their
primary CD4+ T-cell models that DSF treatment successfully
increases viral transcription, but fails to effectively enhance
viral translation, as the levels of viral-encoded GFP remained
low, suggesting the importance of post-transcriptional
block(s) as one mechanism leading to HIV latency that needs
to be relieved to purge the viral reservoir. It is therefore very
likely that DSF may not generate a cellular environment that
effectively sustains HIV particle production ex vivo. Similar
observation has been reported for SAHA, that is, weak effect
at the level of viral particle production in vivo.11 Notably,
a clear change in plasma HIV-1 RNA with subsequent
decrease in the reservoir size has been seen in vivo only for
romidepsin (combined with immunotherapy)28 and for check
point inhibitor nivolumab.29 Importantly, no study so far
affected time from interruption of cART to viral rebound.
These observations and recent studies demonstrating cell-type
specificity of LRAs suggest that to achieve high levels of
latency reversal, combinations of mechanistically distinct
LRAs that exhibit broad spectra of reactivation (being active
in multiple cell types) most likely combined with immuno-
therapy may be required.

In this report, we tested combined treatments of DSF
and romidepsin. This LRA combination is of particular
clinical interest. DSF has an excellent safety profile given
the long history of chronic use for alcohol dependence.
Romidepsin has also been evaluated in vivo, and the
magnitude of HIV-1 induction after romidepsin administra-
tion is greater than anything previously reported for any LRA
tested in humans.13 We evaluated simultaneous and sequen-
tial combined treatments of those 2 promising LRAs in vitro
and ex vivo. Moreover, with the purpose to find the optimal
conditions for synergistic studies, we evaluated several
concentrations of both LRAs including doses corresponding
to maximal plasmatic concentrations, achieved in clinical
trials, for both LRAs. Importantly, we observed significant
synergistic effects only in U1 cells, and only modest addictive
effect was observed ex vivo. Laird et al21 have also observed
that DSF+romidepsin combined treatments did not produce
synergistic but only modest additive effect in ex vivo cultures
of resting CD4+ T cells from infected individuals; however,
lower dose of DSF (0.5 mM) has been tested in this study.
Here, for synergistic ex vivo studies, we evaluated higher
doses of DSF, 2 and 5 mM, with the former corresponding to
max. plasmatic concentration from the recent dose-escalation
clinical trial.

In summary, cell-type–specific and distinct re-
activation patterns of DSF highlight the heterogeneity of
HIV reservoirs and that multiple molecular mechanisms
contribute to HIV latency that need to be relieved to reach
a cure. Notably, demonstration of weak ex vivo reactivation
effect of combined DSF+romidepsin treatments should be
considered for designing future clinical trials and suggest
that to achieve high levels of latency reversal, combination
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of broad-spectrum LRAs (being active in multiple cell types)
may be required.

Finally, DSF selectivity for myeloid cells suggests that
DSF could represent a good LRA candidate to reactivate this
neglected reservoir of myeloid origin including monocytes
and microglial cells.
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