Published for SISSA by Springer Received: December 28, 2018 Revised: April 1, 2019 Accepted: April 22, 2019 Published: May 7, 2019 Search for large missing transverse momentum in association with one top-quark in proton–proton collisions ats = 13 TeV with the ATLAS detector The ATLAS collaboration E-mail: atlas.publications@cern.ch Abstract: This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton–proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb−1 are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered. Keywords: Beyond Standard Model, Dark matter, FCNC Interaction, Hadron-Hadron scattering (experiments), vector-like quarks ArXiv ePrint: 1812.09743 Open Access, Copyright CERN, https://doi.org/10.1007/JHEP05(2019)041

for thebenefit of theATLAS Collaboration. Article funded by SCOAP3 . Contents 1 Introduction 1 2 Signal phenomenology 3 2.1 DM candidates associated with top-quarks 3 2.2 Single production of vector-like T quarks 4 3 ATLAS detector 5 4 Data and simulation samples 5 5 Event reconstruction and object selection 7 6 Event selection and background estimation 9 6.1 Signal region definition 10 6.2 Background estimation 11 7 Systematic uncertainties 13 8 Results 15 9 Conclusions 22 A Event yields in the signal and control regions after the fit to data 23 TheATLAS collaboration 33 Introduction In spite of its successes in describing the phenomenology of the fundamental particles and thecorrespondinginteractions,the StandardModel(SM) canbe consideredasalow-energy approximation of a more fundamental theory with new degrees of freedom and symmetries that would become manifest at a higher energy. One argument supporting the idea that new particlesbeyond the SM might exist arises from astrophysical measurements, such as the rotational speed of stars in galaxies and gravitational lensing[1–3]. These observationspoint to the existence of non-light-emitting matter, a dominant fraction of which is of non-baryonic form, usually referred to as dark matter (DM). Even if there are no viable candidates in the SM for particles which could explain DM, proton–proton collisions at the Large Hadron Collider (LHC) may possibly produce new particles that coupleboth to SM particles and to these DM candidates. While such candidates are not expected to interact significantly with detectors, the SM particles produced in association with the unobserved DM particles could allow these processes tobe detected. Search strategies depend on the type of particle or system that is recoiling against the unseen particle. BothATLAS and CMShavecarried out searches forinvisible particles producedin association with jets[4–7], photons[8,9], W or Z bosons [5, 10, 11]and Higgs bosons [12–15], significantly constraining the allowed parameter space for different classes of models predicting DM candidates. This paper describes a search for the production of invisible particles in association with a single top-quark in proton–proton collisions produced at the LHC with a centre-of → mass energy of s = 13 TeV and detected using the ATLAS detector. Such a final state, commonly referredtoas “mono-top”,ischaracterisedby a top-quarkand significant missing transverse momentum, which is due to the undetected particles. Background contributions from SM processes [16] are expected tobe small. In addition, this search is sensitive to specific DM models, since the presence of top-quarks in the final state constrains the flavour structure of the considered couplings[17, 18]. Similar searches were previously conducted bythe CDF Collaboration using 7.7fb−1 ofTevatron pp¯collisions at → s =1.96TeV[19]and →→ by theATLAS and CMS collaborations using s =8TeV[20, 21]and s = 13TeV[22] LHC data. Searches for new phenomena in events with same-charge leptons and b-tagged jets [23] provide information complementary to the results from mono-top searches and exclude new vector resonances with masses up to 3 TeV, assuming a dark-sector coupling of 1.0 and a coupling to SM particles above 0.3. A final state with a top-quark and missing transverse momentum can also originate from the single production of new vector-like quarks if these decay into a top-quark and a Z boson that decays invisibly into two neutrinos. Vector-like quarks are colour-triplet spin-1/2 fermions in which, in contrast to the SM quarks, the left-and right-handed components have the same properties under transformations of the electroweak symmetry group SU(2)L × U(1)Y. Such new particles are predicted in SM extensions, such as Little Higgs[24, 25] and Composite Higgs[26, 27] models, and are expected to mix with SM quarks[28]. In order to preserve gaugeinvariance, onlya limited setofpossible representations exist [29, 30] and their electric charge can be +2/3e (T quark), −1/3e (B quark), +5/3e (X quark) or −4/3e (Y quark), with e being the elementary charge. In this paper, only the single production of vector-like T quarks (VLT) via an electroweak interaction is considered. Although couplings of T quarks to first-and second-generation SM quarks are not excluded[31, 32], it is common to assume that they couple exclusively to third-generationSM quarks[33].Such couplings canbe describedin termsofsin BL [34], where BL is the mixing angle of the T quark with the top-quark, or in terms of a generalised coupling γT [35, 36]. The T quarks can decay either via the charged current, i.e. T ≡ Wb, or via flavour-changing neutral currents[37], i.e. T ≡ Zt and T ≡ Ht. The T ≡ Zt ≡ θ¯ θWb decay is considered in the present search. TheATLAS and CMS collaborations have sought pair production of T quarks decaying into third-generation quarks in pp collisions ata centre-of-mass energy of8TeV[38–41], targeting all threepossible decay modes. Searches at 13TeVhave aimed at final states with leptons, targeting the T ≡ Zt decay[42, 43], the T ≡ Wb decay[44,45], aswell asgeneral single-lepton andfully hadronic final states withboostedbosons [46, 47] andmultiple btagged jets[46, 48, 49]. The most stringent mass limit for an isospin singlet T is 1.3TeV[50]. For such large T masses, the cross-section for single T production may be larger than the pair-production cross-sectionbecause of the largeravailablephasespace. Nonetheless, the comparison of single-and pair-production cross-sections depends on the assumed coupling to the SM quarks. Single production of T quarkswas soughtat8TeV[40,51,52]by the ATLAS Collaboration. At 13TeV, theATLAS and CMS collaborations have sought the decays T ≡ Wb [53, 54], T ≡ Ht [55, 56]and T ≡ Zt [43, 57, 58]. In this paper, two channels for the mono-top signature are considered, targeting the case in which the W boson originating from the top-quark decays into an electron or muon and a neutrino (leptonic channel) and the case in which it decays into a pair of quarks (hadronic channel). These analyses define different signal regions, maximising the signal discovery sensitivity, and control regions, enriched with the dominant background processes. The statistical interpretation of the results is based on a simultaneous fit to the signal and control regions to determine apossible signal contribution and constrain the main backgrounds with data, taking into account experimental and theoretical systematic uncertainties. The paper is organised as follows. The signal models are introduced in section 2. After a brief introduction to theATLAS detector, given in section 3, the data samples and sam
ples of simulated signal and background events are described in section 4. The algorithms for the reconstruction and identification of final-state particles are summarised in section 5. Section6describes the criteria for the selection of candidate signal events. This section also describes the estimation of the background contribution with the help of dedicated control regions in data. The experimental and theoretical systematic uncertainties (section 7)are taken into account in the statistical interpretation of data, with the results presented in section 8. Concluding remarks are given in section 9. 2 Signal phenomenology This paper presents a search for two different signals: DM candidates produced in association with top-quarks and single production of vector-like T quarks decaying into a top-quark and a Z boson. 2.1 DM candidates associated with top-quarks In this search the resonant and non-resonant production of DM particles associated with a top-quark are considered. The non-resonant case, represented in figure 1(a) and figure 1(b), corresponds to a flavour-changing neutral-current interaction, producing a top-quark and a new vector particle V, which in turn decays invisibly into a pair of DM particles. Such a process canbe parameterised through a general Lagrangian[16,59]: Lint =¯¯ aVµu�µPRt + gxVµσ�µσ+h.c., where a massive vector boson V is coupled to a DM particle (represented by a Dirac fermion σ) with a strength controlled by the parameter gx. The term PR is the righthanded chirality projector. The parameter a stands for the coupling constant between the (a) (b) (c) (d) Figure 1. Representative leading-order diagrams corresponding to the signals sought in this paper: non-resonant (a) t-channel and (b) s-channel production ofa top-quark in association withavector boson V which decaysintotwoDM particles;(c) resonantproductionofa coloured scalar π that decays into a DM particle and a top-quark; and (d) single production of a vector-like T quark decaying into Zt(≡ θ¯ θbW). massive vector boson V and the t-and u-quarks, and µ are the Dirac matrices. Another possibility is the resonant case, corresponding to the production of a coloured charge-2/3 scalar(π) decayinginto a top-quark and a spin-1/2 DM particle(σ)[60]. This process, represented in figure 1(c), is describedby the following Lagrangian[16, 59]: Lint = ηπ ¯σPRt +h.c., dcPRs + yπ¯ where the parameters η and y represent the couplings of the charged scalar to the d-and s-quarks and to the top-quark and the DM particle σ, respectively. 2.2 Single production of vector-like T quarks The single production of T quarks can occur via a charged WTb or a neutral ZTt vertex. However, ZTt production is suppressed because of the required top quark in the initial state. For this reason, ZTt production is not considered in this analysis and single VLT production refers to T production via the WTbvertex throughout this paper. The T quarks can decay into bW , tH and tZ, with the corresponding branching ratios(B)depending on the specific model considered[33, 36]. Thespecific caseof single productionofvector-like T quarks decaying into tZ, followed by the Z boson decaying into neutrinos, results ina mono-top signature. As canbe seen in figure1(d), oneimportant differencebetweenDMproductionandvector-like T-quark production is the presence of additional quarks in the single production of T quarks, which will lead to at least one jet being detected at a small angle relative to the beam line. Similarly to the DM case, the topology of the VLT signal has a distinctive signature, characterised bythe presence of a top-quark and missing transverse momentum, arising from the Z ≡ θθ¯decay (and from the t ≡ bW ≡ τθ decay in the single-lepton channel case). 3 ATLAS detector TheATLASexperiment[61]attheLHCisamultipurpose particle detector with nearly4κ coverage around the collision point.1 It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a2T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range |1|< 2.5. It consists of a silicon pixel detector, including the insertable B-layer[62,63]installed after Run1ofthe LHC,a silicon microstrip detector, and a transition-radiation tracking detector. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity for |1|< 3.2. A steel/scintillator-tilehadron calorimeter covers the central pseudorapidityrange(|1|< 1.7). The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to |1|=4.9. The outer part of the detector includes a muon spectrometer with high-precision tracking chambers providing coverage up to |1|=2.7, fast detectors for triggering over |1|< 2.4, and three large air-core toroidal superconducting magnets with eight coils each.A two-level trigger system[64], using cus
tom hardware followed by a software-based trigger level, is used to select events of interest at an average rate of 1kHz. 4 Data and simulation samples This analysis isperformed using pp collision data recorded at a centre-of-mass energy of → s = 13TeV with theATLAS detector during 2015 and 2016 in theperiods when the LHC was operating with 25 ns bunch spacing and with an average number of collisionsper bunch crossing ≥µ≈ of around 23. Onlyperiods in which all detector components necessary for this analysis were functional are considered, resulting in a data sample with a total integrated luminosity of 36.1fb−1 . In the single-lepton channel, events are required to pass at least one of the single-muon or single-electron triggers[64]. The triggers require a pT of at least 20 GeV (26 GeV) for muons and 24 GeV (26 GeV) for electrons for the 2015 (2016) data sets, and also have requirements on lepton reconstruction and isolation. These are complemented by triggers 1ATLAS usesaright-handed coordinate system withits originatthe nominalinteractionpoint(IP)in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axispoints upwards. Cylindrical coordinates (r,4) are used in the transverse plane, 4being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar e angle e as 7= −ln tan(e/2). Angular distance is measured in units of !R = (!7)2 +(!4)2 . with higher pT thresholds and relaxed isolation and identification requirements to ensure maximum efficiency at higher lepton pT. In the hadronic channel, events are considered if they are accepted by triggers that select events with high missing transverse momentum, with online thresholds of 70 GeV in 2015 and 90 GeV to 110 GeV in 2016. For all signal and background processes of interest, Monte Carlo (MC) events were simulated. Signal events for both the resonant and non-resonant DM scenarios were generated according to a simplified model [65] described in section 1, implemented in MadGraph5 aMC@NLOv2.3.2[66]throughFeynRules 2.0[67, 68]. Such generation was done at leading order (LO) using the NNPDF3.0LO [69] parton distribution function (PDF) set. Parton showering, hadronisation and underlying-event modelling were handled using the Pythia 8.212[70] event generator with the A14[71] set of tuned parameters, using the NNPDF2.3LO PDF set [72]. Signal samples for the resonant model were generated assuming a DM mass of mx = 10 GeV and a range of the new scalar masses, m<, between 1 TeV and 5 TeV, representing two different kinematic regimes. The kinematic distributions predictedby the modelhave only a small dependence onthe coupling parameters and therefore all samples were generated using a coupling constant of η =0.2 and a mixing parameter of y =0.4. The remaining kinematic dependence on the different couplings and masses was accounted for by means of a reweighting procedure (see section 8 for details). Similarly, the signal samples for the non-resonant model were generated for values of mV between 500 GeV and 3 TeV, corresponding to the expected sensitivity of the analysis, and abenchmark DM mass mx = 1 GeV. The values of the couplings were set to a =0.5 and gx =1.0. The kinematic effect of changing the coupling values was taken into account by using the previously mentioned reweighting procedure. The samples were normalised to the theoretical LO cross-sections, computed with MadGraph5 aMC@NLO. The singleproduction of T quarks was generated using the Feynrules 2.0 implementationofa generalmodel[35]interfacedtoMadGraph5 aMC@NLOv2.3.2. The NNPDF2.3 LO PDF set and Pythia 8.212 with the A14 set of tuned parameters were used. Since the current analysis targets a final state with large missing transverse momentum, only the T ≡ Zt decay, with Z decaying invisibly, was considered, as represented in figure 1(d). Samples were generated for T massesinthe range from700to 2000GeV withabenchmark coupling of γT =0.5 in the WTb production vertex. Additional samples were generated with alternative values of γT =0.1 and 1.0 in order to study the effect of a varying T-quark width on kinematic distributions. The samples were normalised to the nextto-leading-order (NLO) cross-section by correcting the LO cross-sections calculated with MadGraph5 aMC@NLO for the difference between the NLO and LO cross-sections reported for the neutral single-T production process viaa ZTt coupling[36].For largevalues of the coupling the narrow-width approximation used in the cross-section calculation does not apply, so the cross-sections were corrected to include width effects, using a reweighting procedure similar to that previously mentioned, in order to account for the corresponding kinematic effects. For the background samples, several matrix element (ME) event generators were combined with parton shower andhadronisation programs. Powheg-Box v2[73–79]interfaced to Pythia 8.210 using the A14 set of tuned parameters was used to simulate tt¯production at NLO. Single top production was generated at NLO with Powheg-Box v1 for the t-, Wt-and s-channels and at LO with MadGraph5 aMC@NLO for the tZq process, interfaced to Pythia 6.428[80]. The CTEQ6L1 PDF set[81] and thePerugia 2012 set of tuned parameters[82]were usedin the parton shower, hadronisation, and underlying-event simulation. The CT10f4 (CT10) PDF set[83]was used in the matrix element calculations for the t-channel(Wt-and s-channels). To model the W+jets and Z+jets background the Sherpa v2.2.1 [84] generator was used. Matrix elements were calculated for up to two partons at NLO and up to four partons at LO using the Comix [85] and Open-Loops [86]ME generators, and merged with the Sherpa parton shower[87]according to the ME+PS@NLO prescription[88]. The NNPDF3.0 next-to-NLO (NNLO) PDF set[89] was used in conjunction with a Sherpa parton shower tuning from the authors. Diboson processeswere simulated with Powheg-Box v2 interfaced to Pythia 8.186. The CT10nlo PDF setwas used for the hard process while the CTEQ6L1 PDF setwas used for the parton shower. For the simulation of tt¯events with additionalbosons tt¯+X (X = W, Z, Higgs), MadGraph5 aMC@NLO v2.3.2 interfaced to Pythia 8.186 was used at NLO in QCD. Non-perturbative effects were modelled with the AZNLO setof tuned parameters[90]. The considered cross-sections for the dominant backgrounds, tt¯and W/Z +jets, were evaluated at NNLO in quantum chromodynamics (QCD)[91, 92]. The calculation for tt¯also includes next-to-next-to-leading logarithmic soft gluon terms. The EvtGen v1.2.0program[93]was usedtosimulate propertiesofthebottomand charmed hadron decays except for samples generated with Sherpa. All simulated samples except the DM non-resonant signal in the leptonic channel and tt¯+X processes were processed with the full simulation of theATLAS detector[94]usingGeant4[95]. Additional samples used in the estimation of systematic uncertainties were instead produced using Atlfast2 [96], in which a parameterised detector simulation was used for the calorimeter responses. This simulation was also used for the generation of the DM non-resonant signal in the leptonic channel and tt¯+X processes. All samples were simulated with a varying number of minimum-bias interactions generated with Pythia 8.186 using the A2 set of tuned parameters[97], overlaid on the hard-scattering event to account for the multiple pp interactions in the same or nearby bunch crossings (pile-up). Simulated events were corrected usingper-event weights to describe the distribution of the average number of interactions per proton bunch-crossing as observed in data. Event reconstruction and object selection Events are required to have at least one vertex candidate with at least two tracks with pT > 400 MeV. The primary vertex is taken to be the vertex candidate with the largest sum of squared transverse momenta of all associated tracks. Electron candidates are reconstructed from an isolated electromagnetic calorimeter energy deposit matched to a track in the inner detector passing tight likelihood-based requirements[98]. They are requiredtohavea transverse energy ET > 30 GeV and pseudorapidity |1|< 2.47, with the transition regionbetween the barrel and endcap electromagnetic calorimeters, 1.37 < |1|< 1.52, excluded. Electron candidates must have a track satisfying requirements of |d0|/λd0 < 5for the transverse impact parameter significance relative to the beamline and|6z0 sin B|< 0.5mm for the longitudinal impact parameter calculated relative to the primary vertex. Furthermore, electrons must satisfy isolation requirements based on inner detector tracks and topological clusters in the calorimeter [99], with an isolation efficiency of 90% (99%) for electrons from Z ≡ ee decays with pT = 25(60) GeV. Correction factors are applied to simulated electrons to take into account the small differences in reconstruction, identification, and isolation efficienciesbetween data and MC simulation. Muon candidates are reconstructed by combining tracks reconstructed in the inner detector with matching tracks reconstructed in the muon spectrometer, and are required to satisfy pT > 30 GeV and |1|< 2.5[100]. Muon candidates must satisfy requirements of |d0|/λd0 < 3 and |6z0 sin B|< 0.5mm for the transverse impact parameter significance and the longitudinal impact parameter, respectively. An isolation requirement based on inner detector tracks and topological clusters in the calorimeters is imposed, which achieves an isolation efficiency of 90% (99%) for muons from Z ≡ µµ decays with pT = 25(60) GeV. Similarly to electrons, correction factors are applied to muons to account for the small differencesbetween data and simulation[100]. Jets are reconstructed from topological clusters of energy deposited in the calorimeter[99]using the anti-kt algorithm[101]with a radius parameter of 0.4 (1.0) for small-R (large-R)jets, as implemented in theFastJet package[102]. Small-R jets are calibrated using an energy-and 1-dependent simulation-based calibration scheme with correctionsderived from data[103]. Jets are accepted within the fiducial region |1|< 2.5 and pT > 30 GeV(pT > 25 GeV) for the leptonic (hadronic) analysis. In the hadronic channel this threshold hasbeen relaxed to increase forward-jet acceptance. Forward jets in the region 2.5 < |1|< 4.5 are also considered in the vector-like T-quark search analysis. Quality criteria are imposed to reject events that contain anyjets arising from non-collision sources or detector noise [104]. To reduce the contribution from jets associated with pile-up, jets with pT < 60 GeV and |1|< 2.4 must satisfy a criterion that matches them to the hard-scatter vertex using information from tracks reconstructed in the inner tracking detector[105]. To prevent double counting of electron energy deposits as small-R jets, the closest jet c with distance6Ry,< = (6y)2 +(6π)2 < 0.2 from a reconstructed electron is removed. If the nearest surviving jet is within 6Ry,< =0.4 of the electron, the electron is discarded to ensure it is sufficiently separated from nearbyjet activity. Jets withfewer than three tracks and distance6Ry,< < 0.2 from a muon are removed to reduce the number of jet fakes from muonsdepositing energyinthe calorimeters. Muons witha distance6Ry,< < 0.4 from any of the surviving jets are removed to avoid contamination due to non-prompt muons from heavy-flavour hadron decays. Large-R jets are trimmed [106] to mitigate the impact of initial-state radiation, underlying-event activity and pile-up. The jet energy and pseudorapidity are further calibrated to account for residual detector effects using energy-and 1-dependent calibration factors derived from simulation, with uncertainties derivedfrom data[107].Trimmed large
R jets are considered if they fulfil pT > 250 GeV and |1|< 2.0. To identify large-R jets that are more likely to have originated from hadronically decaying top-quarks than from the fragmentation of other quarks and gluons, jet substructure information is exploited. In the trimming procedure, sub-jets, with radius Rsub =0.2, are clustered starting from the large-R jet constituents using a kt algorithm. A sub-jet is retained only if it contains at least 5% of the total large-R jet transverse momentum, thereby removing the soft constituents from the large-R jet. A top-tagging algorithm [108] is applied, corresponding toa loose workingpoint with an approximately constant top-tagging efficiency of 80% above pT of 400 GeV. The algorithm depends on the calibrated jet mass, measured from clusters in the calorimeter, and the N-subjetiness ratio ν32 [109]. The N-subjetiness νN [109]expresses how well a jet can be described as containing N or fewer sub-jets. The ratio ν32 = ν3/ν2 allows discriminationbetween jets containinga three-prong structure and jets containing a two-prong structure. In addition to calorimeter-based jets, jets reconstructed from inner detector tracks using the anti-kt algorithm with a radius parameter of 0.2are also used in the hadronic channel, following a similar strategy as in[110]. They are referred to as track-based jets and are required to satisfy pT > 10 GeV and |1|< 2.5. Small-R calorimeter-based and track-based jets with |1|< 2.5 are b-tagged as likely to contain b-hadrons using multivariate techniques whichexploit the long lifetime of b-hadrons and large invariant mass of their decay products relative to c-and light hadrons[111, 112]. The working point used provides an average tagging efficiency of 70% for b-jets and a rejection factor of 12.2 (7.1) against calorimeter-based (track-based) jets initiated by cquarks and 381 (120) against calorimeter-based (track-based) jets initiatedby light-flavour quarks, in simulated tt¯events. Correction factors are derived and applied to correct for the small differences in b-quark selection efficiencybetween data and MC simulation[111, 113, 114]. The missing transverse momentum is calculated as the negative vector sum of the transverse momenta of particles in the event, and its magnitude is denoted Emiss . In addi- T tion to the identified jets, electrons, muons, hadronically decaying ν-leptons and photons, a track-based soft term is included in the Emiss calculationbyconsidering tracks associated T with the hard-scattering vertexin the event which are not also associated with an identified jet, electron, muon, hadronically decaying ν-lepton, or photon[115, 116]. Event selection and background estimation The experimental signature of mono-top events expectedin the DM (resonant and nonresonant) and vector-like T-quark models considered is the presence of a top-quark and significant missing transverse momentum, as seen in section 2. For the case of single VLT production, at least one additional forwardjet is also expected. The leptonic channel is only considered in order to target the non-resonant DM model. In this model, the u-quark-initiated production of top-quarks is favoured over anti-topquark production, due to the PDF structure of the proton. Therefore, positively charged leptons are favouredin the final state. Events that pass preselection are required to contain exactly one positively charged lepton and one b-tagged jet with pT > 30 GeV. In order to reduce the number of multijet background events, which are characterised by low Emiss T and low W boson transverse mass 2 m W Emiss T > 50 GeV and T , it is also required that In the hadronicchannel,because of the large expected Lorentzboostof the top-quarks producedinthesignalevents,thetop-quarkdecayproductscanbe collimatedintoalarge-R jet. This signature is used inboth the non-resonant and resonant DM models and the VLT models. Preselected events are then required to contain zero leptons, one large-R jet with pT > 250 GeV and |1|< 2.0. In order to suppress the multijet background contribution, Emiss T > 200 GeV is also required. 6.1 Signal region definition Thesignal region selectionis optimised for the different consideredbenchmarks with simulated data, usingvariables tested and found tobewell-modelled. In the optimisation the sensitivity is estimatedbyperformingafittotheshapeofthe most discriminating observable including systematic uncertainties (see section 8 for details). These observables are Emiss T in the leptonic channel and the transverse mass of the top-tagged large-R jet(J)and the Emiss mT(Emiss system, ,J)3, in the hadronic channel. For the tested mass hypothesis, TT the resulting best-performing selections lead to three signal regions: 1L-DM-SR for the non-resonant DM search in the leptonic channel and 0L-DM-SR and 0L-VLT-SR targeting the search in the hadronic channel for DM and VLT quarks, respectively. In the leptonic channel, the mono-top signal is enhanced in regions of phase space W m > 60 GeV. T + Emiss T characterised by high m W T values. In addition, the lepton and b-tagged jet are closer to each other when originating from the decay of a top-quark than in the case of W+jets and multijet background events. Hence, in addition to the preselection described previously, W T > 260 GeV and |6π(τ,b)| In the hadronic channel, events in 0L-DM-SR and 0L-VLT-SR are required to contain exactly one top-tagged large-R jet with pT > 250 GeV and one b-tagged track-based jet, in addition to the preselection criteria. The distance between the top-tagged large-R jet and the Emiss in the transverse plane, 6<(Emiss,J), is required to fulfil 6<(Emiss ,J) 2 κ/2 T TT since for signal events they are more likely to be produced back-to-back. In order to suppress background events due to fake Emiss mostly coming from jet mis-reconstruction T in multijet production, the asymmetry between Emiss and the pT of the top-tagged large- T (Emiss −pT(J))/(Emiss R jet defined as O = + pT(J)) is required to be O > −0.3. The TT multijet background is additionally suppressedbyrequiring the minimum distancebetween 2Emiss W The transverse mass of the lepton and system is defined as m = TT e 2pT(η)Emiss (1 −cos!4(pT(η),Emiss )), where pT(η) denotes the modulus of the lepton transverse TT momentum, and !4(pT(η),Emiss )the azimuthal angle between the missing transverse momentum and the T lepton directions. 3Emiss mT(Emiss The transverse mass of the large-R jet and T is defined as T ,J) = m(J)2 +2Emiss ·ET(J) −pT(J) cos(<(J) −<(Emiss )), where mT(J) is the reconstructed invariant TT mass of the calibrated calorimeter-cluster constituents of a large-R jet and ET(J) is the projection of its energy in the transverse plane. the region 1L-DM-SR is defined by requiring m < 1.2. the Emiss T and anysmall-R jet in the transverse plane tobe 6 1.0. The signal region 0L-VLT-SR is defined by requiring in addition at least one forward jet with pT > 25 GeV. The signal region requirements are summarised in table 1. 6.2 Background estimation Dedicated control regions enriched in the dominant backgrounds are included in the fit to constrain these backgrounds with data. Multijet production background is estimated from data, while the rest of background processes are taken from simulation. The dominant background in the signal regions is due to tt¯production inbothchannels, representing 78% of the total background in the leptonic and 55% (64%) in the DM (VLT) hadronic channels. This is followed by contributions from W+jets (13%) and single top production (6.8%)inthe leptonicchannelandfrom W+jets and Z+jets production, at the level of 12% (13%) for W+jets and 14% (15%) for Z+jets in the DM (VLT) signal regions, in the hadronic channel. A minor background in the signal region with a non-negligible contribution in the control regions is multijet production. The rest of the backgrounds considered in the analysis are diboson production as well as tt¯production in association with a Z, W or Higgsboson. The estimation of the multijet background is in particularly important in the control regions used to estimate the main backgrounds. In the leptonic channel the multijet background originates from either misidentification of a jet as a lepton candidate (fake lepton) or from the presence of a non-prompt lepton (e.g., from a semileptonic b-or c-hadron decay) that passes the isolation requirement. The shape and the normalisation of the relevant distributions in multijet events and related systematic uncertainties are estimated using a matrix method in the electron channel and the anti-muon method in the muon channel[117]. The matrix method exploits differences in efficiencies to pass loose or tight quality requirements[98]between prompt leptons, obtained from W and Z decays, and non-prompt or fake lepton candidates, from the misidentification of photons or jets. These efficiencies are measured in dedicated control regions. The prompt lepton efficiencies are measured as a function of the pT of the leading jet and the angular distance between the lepton and its nearest jet, while the non-prompt or fake efficiencies are parameterised in terms of the pT of the leading jet, the angle in the transverse planebetween the lepton and the Emiss T and the b-tagged jet multiplicity. Multijet background events containing nonprompt muons are modelled with the anti-muon method using a sample of events enriched in non-isolated muons [117]. Most of these events originate from b-or c-hadron decays in jets. These events pass the kinematic requirements of the selections described in section 5. Only someof themuon identification criteria are modified, ensuring thereis nooverlap with the signal selection. The normalisation is determined using a binned maximum-likelihood fit to the number of events observed in data in a control region dominated by multijet events. This region is defined with the preselection criteria, but removing the requirement on Emiss W and requiring mT < 60 GeV. T In the hadronic channel the estimationof themultijet backgroundisperformed using a set of control regions (B,C and D) dominated by multijet background and defined to be orthogonal to the considered signal region (0L-DM-SR or 0L-VLT-SR). The shape of the Selections (leptonic channel) 1L-DM-SR 1L-TCR 1L-WCR Number of leptons pT(τ)[GeV] Lepton charge Number of jets Number of b-tagged jets pT(b-tagged jet) [GeV] Emiss T [GeV] mW T + Emiss T [GeV] mW T [GeV] |6π(τ, b)| = 1 > 30 > 0 = 1 = 1 > 30 > 50 > 60 > 260 < 1.2 = 1 > 30 > 0 = 2 = 2 > 30 > 50 > 60 60 < mW T < 100 — = 1 > 30 > 0 = 1 = 1 > 30 > 50 > 60 60 < mW T < 100 — Selections (hadronic channel) 0L-DM-SR 0L-VLT-SR 0L-TCR 0L-VCR Number of forward jets Number of leptons Emiss T [GeV] Number of large-R jets Number of top-tagged jets 6<(Emiss T , J) Number of track-jets Number of b-tagged track-jets Veto jet (masked tile-calo) O = Emiss T −pT(J) Emiss T +pT(J) 6 200 2 1 2 1 > : 2 2 1 = 1 — > −0.3 > 1.0 — = 0 > 200 2 1 2 1 > : 2 2 1 2 2 applied > −0.3 0.2 < 6 200 2 1 2 1 > : 2 2 1 = 0 — > –0.3 > 1.0 Table 1. Overview of the event selections used to define the signal and control regions. multijet background is estimated from the control region B, which differs from the signal regionbyrequiring zero top-tagged large-R jets. Thisshapeis normalisedby a factor which is calculated as the ratioof thenumbers ofmultijet eventsin regionsC andD. RegionC (region D) differs from the signal region (B region) by requiring 6<(Emiss,J)<κ/2. T In regions B and D, with zero top-tagged large-R jets, J is a large-R jet chosen randomly from the selected large-R jets. The multijet contribution in these control regions is determined from the difference between data and the residual contribution of other background processes evaluated from simulation assuming the theoretical predictions for the corresponding cross-sections. The control regions are defined tobe orthogonal to each other and to the signal region. They are required to fulfil the preselection criteria. In the leptonic channel, control regions enriched in tt¯and W+jets processes are used (referred to as 1L-TCR and 1L-WCR, respectively). In the hadronic channel, a control region enriched in tt¯production(referred to as 0L-TCR) and a region enriched in both the W+jets and Z+jets processes (referred to as 0L-VCR) are defined. The control regions in the leptonic channel, 1L-TCR and 1L-WCR, are defined by W modifying the requirement on mto a window around the W mass, 60 GeV 0.2 in order to suppress the multijet background). Events with calorimeter-based jets located close todisabled modules of the hadronic calorimeter are vetoed. In the 0L-VCR control region a veto on b-tagged trackbased jets is applied. Table1details the control region selection in comparison with the signal region requireand mT(Emiss ments. Acomparison of the observed and expected distributions for Emiss ,J) TT in the control regions is shown in figure 2 for the leptonic and hadronic channel, respectively. The expectations in the leptonic (hadronic) channel are obtained from a fit of the background-only hypothesis to data in the 1L (0L) control regions, where the normalisations of the tt¯and W+jets(tt¯and W/Z +jets) processes are treated as nuisance parameters in the fit (see section 8 for details of the fit). Systematic uncertainties The normalisation and shapes of the signal and background estimates are affected by systematic uncertainties fromexperimental sourcesandtheoretical predictions. Each sourceof uncertaintyis includedasanuisance parameterinthelikelihoodfit that determinesthepossible signal contribution. The analysis is limitedbystatistical uncertainties, thus the inclusionof systematic uncertainties leadstoonlya small degradationoftheexpected sensitivity. The sources of experimental uncertainty include the uncertainty in the lepton trigger, identification and isolation efficiencies, the lepton energy and momentum scale and resolution[98–100], the Emiss trigger and track-based soft-term scale and resolution [115, 116], T the jet pile-up rejection requirement, energy scale and resolution[118], resolutions for rele
vant large-R jet properties (mass, transverse momentum and the N-subjetiness ratio ν32), the b-tagging efficiency[111, 112], the pile-up reweighting, and the luminosity. The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%, derived following a methodology similar to that detailed in ref. [119], using a calibration of the luminosity scale through x–y beam-separation scans and using the LUCID-2 detector for the baseline luminosity measurements[ 120]. This systematic uncertainty is applied to all backgrounds and signals that are estimated using MC events, which are normalised to the measured integrated luminosity. Theoretical cross-section uncertainties are applied to the normalisation of the simulated processes. Additional shape uncertainties stemming from theoretical estimations are calculated by comparing samples simulated with different assumptions and are estimated for the dominant backgrounds. Uncertaintiesin themodellingof the tt¯and t-channel single top background come from the choice of NLO-matching method, the parton shower and hadronisation modelling, and the amount of additional gluon radiation. The NLO-matching uncertainty is estimated by comparing events produced with Powheg-Box and MadGraph5 aMC@NLO[66], both (a) (b) (c) (d) Figure 2. Comparison of data and SM prediction for the Emiss distribution in (a) the tt¯and T (b) W+jets control regions; and for the transverse mass of the top-tagged large-R jet and Emiss T mT(Emiss system, ,J), distribution in the (c) tt¯and (d) W/Z +jet control regions used for the T dark-matter search ((a) and (b)) and vector-like T-quark search ((c) and (d)). Other backgrounds in the 1L regions include multi-jet, Z+jets and diboson contributions, while in the 0L regions it is composed of diboson, tt¯+X and multi-jet contributions. The expectations in the leptonic (hadronic) channel are obtained from a fit of the background-only hypothesis to data in the 1L (0L) control regions, where the normalisations of the tt¯and W+jets(tt¯and W/Z +jets)processes are treated as nuisance parameters in the fit. The error bands include statistical and systematic uncertainties. The last bin contains the overflow events. interfaced with Herwig++[121]. The parton shower, hadronisation, and underlying-event model uncertainty is estimated by comparing two parton shower models, Pythia and Herwig++, while keeping the same hard-scatter matrix element generator. Variations of the amount of additional gluon radiation are estimated by comparing simulated samples with enhanced or reduced radiation and different values of tunable parameters related to additionalradiation[122]. Thechoiceofschemeto accountfortheinterferencebetweenthe Wt and tt¯processes constitutes another source of systematic uncertainty that is estimated bycomparing samples using either thediagram removal scheme or the diagram subtraction scheme[123]. Modelling uncertainties affecting the shape of the W/Z +jets background are estimatedinthe hadronicchannel, where theseprocesses constituteanimportantbackground. An uncertainty in the modelling of W/Z +jets is estimated by comparing the nominal simulation with a MadGraph5 aMC@NLO simulation in which matrix elements were calculated at LO for up to four partons. In addition, the effects of independently varying the scales for the renormalisation, factorisation, and resummation by factors of 0.5 and 2 are used. Since the W/Z +jets background is constrained by a control region with a veto on b-tagged jets, an additional uncertainty related to the b-flavour content in the W/Z +jets background is taken into account by varying the number of events containing b-hadronsby 50%[124, 125]. Uncertainties in the modelling of the signal samples have been evaluated for signal points close to the expected exclusion mass limits and found to be negligible. The effects of parton distribution function (PDF) uncertainties on the acceptance of the tt¯and W/Z +jets backgrounds are estimated following the PDF4LHC prescription[126]. The systematic uncertainty of 50% associated with the data-driven modelling of the multijet events is estimated in the leptonic channel, based on comparisons of the rates obtained using alternative methods, as described in previous analyses[117]. In the case of the hadronic channel, this systematic is derived from a closure test of the data-driven method in a multijet-dominated validation region using simulated dijet samples. A breakdown of the effects of the various sources of systematic uncertainty on the background predictionis presentedin table 2 and table 3 for thetwo searches. The relative effects on the background yields in the signal region after the simultaneous fit to data in the signal and control regions are shown. The dominant background modelling uncertainties are due to the modelling of single top Wt production for the leptonic channel and the modelling of the b-flavour content in the W/Z +jets backgrounds. Results In order to test for the presence of a signal, a simultaneous fit to data in the signal and control regionsisperformed. Thefitisbased ona profile-likelihood technique,where systematic uncertainties are allowed to vary as Gaussian-distributed nuisance parameters (NP) and subsequently acquire theirbest-fitvalues. Additionally, the dominant backgrounds are constrained by treating their normalisation as NP in the fit. The calculation of confidence 1L-DM-SR 0L-DM-SR non-t¯t t¯t t¯t Single top W+jets Z+jets Multijet Other b-tagging Emiss T Large-R jets Small-R jets Lepton Luminosity Pile-up Background modelling 4.8 4.6 12 1.1 — — 9.9 7.0 1.2 0.8 2.0 2.1 5.3 1.4 15 14 4.1 2.2 9.0 1.3 < 0.1 2.1 0.3 8.9 2.9 2.1 9.5 2.9 < 0.1 2.1 0.3 5.3 9.2 7.7 2.2 2.2 13 13 1.0 0.5 < 0.1 < 0.1 2.3 2.2 0.8 1.2 27 27 — 3.0 — — — — — 110 8.0 2.0 12 1.0 < 0.1 2.1 1.4 1.0 Total systematic 18 12 6.8 13 32 31 89 16 Table 2. Relative effect (in %) of various sources of systematic uncertainty on the predicted background yields in the signal regions used for the dark-matter search, obtained after the fit to data. Individual sources of uncertainties are correlated, and their sum in quadrature is not necessarily equal to the total background uncertainty. 0L-VLT-SR t¯t Single top W+jets Z+jets Other b-tagging 3.9 3.2 11 7.7 8.4 Emiss T 1.4 1.9 0.8 0.5 0.3 Large-R jets 11 12 15 13 13 Small-R jets 7.3 7.8 7.6 8.3 11 Lepton < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 Luminosity 2.2 2.3 2.4 2.1 2.2 Pile-up 1.3 2.9 4.7 4.1 5.1 Background modelling 14 6.1 28 26 2.7 Total systematic 7.9 15.5 21 19 19.5 Table 3. Relative effect (in %) of various sources of systematic uncertainty on the predicted background yields in the signal region used for the vector-like T-quark search, obtained after the fit to data. Individual sources of uncertainties are correlated, and their sum in quadrature is not necessarily equal to the total background uncertainty. intervals andhypothesis testing isperformed usinga frequentist method as implemented in RooStats[127]using the asymptotic approximation[128]. The Emiss T distribution is used in the 1L signal region and the number of events is used instead in the control regions, while for the case of the 0L regions the distribution of mT(Emiss the transverse mass of the top-tagged large-R jet and Emiss system, ,J), is used TT in signal and control regions. For each of the three fits the binning of the distributions is optimised separately to obtain thehighest expected sensitivity. For the testing of the non-resonant DM signal, both the 1L and 0L regions are used simultaneously in the fit (two signal regions and four control regions). For the resonant DM and VLT tests the fits areperformed in the corresponding0L regions, one signal region andtwo control regions for each fit. Uncertainties due to the limited size of the simulated samples are taken into account in each bin of the fitted distributions. Nuisance parameters accounting for systematic uncertainties are not considered in the fit if they have an impact on either normalisation or shape which is below 1%. The systematic uncertainties are symmetrised 1L-DM-SR 1L-TCR 1L-WCR 0L-DM-SR 0L-VLT-SR 0L-TCR 0L-VCR t¯t 390 ± 140 12 300 ± 3100 8400 ± 1700 10 200 ± 2900 3700 ± 1200 7000 ± 1700 6100 ± 1800 Single top 66 ± 21 2930 ± 760 12 200 ± 1700 1020 ± 260 356 ± 97 274 ± 71 890 ± 250 W+jets 34.2 ± 8.4 1890 ± 640 92 000 ± 24 000 2240 ± 900 770 ± 310 147 ± 87 28 000 ± 12 000 Z+jets 0.40 ± 0.86 112 ± 49 3410 ± 990 2700 ± 1100 850 ± 360 139 ± 83 27 000 ± 11 000 Other 14 ± 15 640 ± 880 7000 ± 10 000 530 ± 190 89 ± 28 1060 ± 640 2730 ± 760 Total Background 500 ± 140 17 900 ± 3400 123 000 ± 26 000 16 600 ± 4500 5800 ± 1700 8600 ± 2000 66 000 ± 22 000 Data 511 17 662 127 286 15 781 5454 8493 62 304 R DM m< = 1 TeV — — — 11 300 ± 1300 — 56 ± 13 8100 ± 1600 R DM m< = 2 TeV — — — 469 ± 83 — 4.3 ± 1.1 349 ± 86 NR DM m< = 1 TeV 165 ± 23 1.02 ± 0.47 20.2 ± 2.8 2090 ± 280 — 29.0 ± 5.9 1600 ± 320 NR DM m< = 2 TeV 6.5 ± 2.7 0.027 ± 0.013 0.496 ± 0.097 95 ± 13 — 1.08 ± 0.21 75 ± 15 VLT mVLT = 0.9 TeV — — — — 112 ± 20 21.0 ± 5.3 76 ± 17 Table 4. Numbers of events observed in the signal and control regions, together with the estimated SM backgrounds before the fit to data. The uncertainties include statistical and systematic uncertainties. Theexpectednumbersofeventsforbenchmark signals normalisedtothe theoretical prediction are also shown. Thebenchmark signals correspond to: the non-resonant (NR) DM model with mV = 1 TeV and 2 TeV, mx = 1 GeV, a =0.5 and gx = 1; the resonant (R) DM model with mq =1 TeV and 2 TeV, mx = 10 GeV, η =0.2 and y =0.4; and a VLT with a mass of 0.9 TeV. and also smoothed if the bin-to-bin statistical variation is significant. Most uncertainties are found to be neither significantly constrained nor pulled from their initial values. Small variations are observed in the tt¯modelling and multijet background uncertainties due to the mis-modelling observed in the shape of the transverse momentum distribution of top-quarks[129, 130]. Small variations are also observed in the large-R jet and Z/W +jets modelling uncertainties. The results of the fit show that the data are compatible with the background-only hypothesis. The numbers of events observed in the signal and control regions are presented in table 4, together with the backgrounds estimated prior to the simultaneous fit. The dis-or mT(Emiss tribution of the observable used in the fit(ETmiss ,J)) in the signal regions for T data and the fitted SM expectation under the background-only hypothesis are shown in figure 3. In these plots, the expected contribution from a benchmark signal is also shown for comparison. No significant excess above the SM expectation is found in any of the signal regions. Since there is no evidence of a signal, expected and observed upper limits on the signal cross-section asafunctionof the V mass for the non-resonant model, the mass of the scalar particle π for the resonant model and the VLT mass are derived at 95% confidence level (CL) and are shown in figure 4. Comparing the cross-section limits with the theoretical expectation, lower limits on the invisible particle and VLT masses canbe derived. The LO values of the cross-section for non-resonant (resonant) DM production are evaluated using MadGraph5 aMC@NLO, as detailed in section 4, assuming mx = 1 GeV, a =0.5 and gx =1(mx = 10 GeV, η =0.2 and y =0.4). For the VLT interpretation, the single-T production cross-section is taken from the NLO calculations for cW = 1, with the coupling cW defined in ref.[36]. The narrow-width approximation is used[36]. For the current analysis, it was checked using dedicated Monte Carlo samples that the chirality of (a) (b) (a) (b) Figure 3. Comparison of data and fitted expectations for the Emiss and the transverse mass of the T mT(Emiss top-tagged large-R jet and Emiss system, ,J), distributions in the signal regions. Other TT backgrounds in the 1L regions include multi-jet, Z+jets and diboson contributions, while in the 0L regions it is composed of diboson and tt¯+X contributions. The background-onlyhypothesis is used in the fit: (a) and (b) including the 1L and 0L DM signal regions as well as the 1L and 0L control regions; (c) 0L DM signal and control regions; (d) 0L VLT signal and control regions. The error bands include statistical and systematic uncertainties. The expected shape ofabenchmark signal normalised to the theoretical prediction is added on top of the SM prediction. Thebenchmark signals correspond to: the non-resonant (NR) DM model with mV =1TeVand2TeV, mx = 1GeV, a =0.5 and gx = 1; the resonant (R) DM model with mq = 1 TeV and 2 TeV, mx = 10 GeV, η =0.2 and y =0.4; and a VLT with a mass of 0.9 TeV. the coupling has negligible impact on the considered observables. The cross-section is also corrected for width effects calculated with MadGraph5 aMC@NLO, assuming that the ratio of NLO to LO cross-sections remains approximately the same for a non-vanishing Tquark width. The computed cross-section is then multiplied by the value of B(T ≡ Zt)in the singlet model, which is R 25% in the range of VLT masses investigated in this analysis. The considered benchmark coupling of γT =0.5 corresponds to cW =0.45. The observed (expected) mass limits at 95% CL are 2.0 (1.9) TeV and 3.4 (3.3) TeV for the non-resonant and resonant dark-matter models, respectively. For the VLT case, there is no observed or expected mass exclusion for the considered referencebenchmark coupling. Two-dimensional exclusion regions in the planes formed by the mediator masses, the DM particle mass, and couplings between the DM, the new heavy particle and the SM fermions are obtained by reweighting the events using the transverse momentum from the vector sum of the momenta of the DM candidates. This procedure is validated with dedicated samples and allows reproduction of the correct event kinematics for the masses and couplings required for the multidimensional scans. The observed (expected) 95% CL upper limit contours for the signal strength λ/λtheory are shown in figures 5(a)–5(c) for the non-resonant model, in which λ is the observed (expected) limit on the model crosssection at a given point of the parameter space and λtheory is the predicted cross-section in the model at the same point. The corresponding results for the resonant model are shown in figures 5(d) and 5(e). Since a reweighting procedure was used to obtain the required signal points, the results shown in figure 5 include a systematic uncertainty in the signal normalisation associated with this procedure. This uncertainty was estimated from dedicated MC samples to be 10% and 25% for the non-resonant and resonant case, respectively,bycomparing reweighted samples with those generated with the corresponding signal masses and couplings. The limited sensitivity of the current analysis to single VLT production for low T masses (cf. figure 4(c)) implies that there is also less sensitivity to the corresponding coupling. This can be seen in figure 6(a), which shows the expected and observed 95% CL upper limits on cW, taken as the sum in quadrature of the left-and right-handed couplings cL,W and cR,W , as a function of the VLT mass. Nonetheless, the sensitivity remains approximately constant for masses up to 1.4 TeV. A singlet T, which corresponds to B(T ≡ Zt) R 25% over the mass range studied in this analysis, was assumed. The obtainedlimits on cW can alsobe translated into expected and observed 95% CL upper limits for the mixing angle of a singlet T with the SM top-quark, as shown in figure 6(b). For these results, a signal reweighting procedure was adopted in order to take into account the width effects induced by the variation of the cW coupling. The systematic uncertainty in the signal normalisation was estimated to be 3% from dedicated MC samples and was considered when deriving the limits shown in figure 6. In the range m(T)> 1.1 TeV, the obtained exclusion limit on the cW coupling improves on the previous results[43]. (a) (b) (c) Figure 4. 95% CL upper limits on the signal cross-section as a function of (a) the V mass in the non-resonant (NR) model, (b) the mass of the scalar particle π in the resonant (R) model and (c) the VLT mass. LO values for the production cross-section were computed for the non-resonant (resonant) DM production modes assuming mx = 1 GeV, a =0.5 and gx =1(mx = 10 GeV, η =0.2 and y =0.4). (a) (b) (c) (d) (e) Figure 5. The 95% CL upper limit contours on the signal strength λ/λtheory are shown for the non-resonant (NR) and resonant (R) DM production models. Non-resonant model: (a) V mass vs a; (b) V mass vs gx and (c) V mass vs mass of the DM candidate σ. Resonant model: (d) mass of the scalar π vs η; (e) mass of the scalar π vs y. The solid (dashed) lines correspond to the observed (median expected and corresponding ±1λ and ±2λ bands) limits for λ/λtheory = 1. The predicted cross-sections were computed with MadGraph5 aMC@NLO. (a) Figure 6. Expected and observed 95% CL limits from the combination of the single-production c 22 channels on (a) the coupling of the T quark to SM particles, cW = c+ cassuming a L,W R,W singlet T, corresponding to a B of R 25%; and (b) the absolute value of sin BL, with BL being the mixing angle of a singlet T with the SM top-quark. Conclusions Emiss This analysis seeks anomalous production of events with large T and a single top → quark in LHC pp data at s = 13 TeV collected by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb−1 . No deviations with respect to SM predictions are observed and 95% CL upper limits on the production cross-section of three BSM processes are obtained: resonant and non-resonant production of dark matter (DM) in association with single top-quarks, and single production of vector-like T quarks decaying into tZ(≡ θθ¯). These limits are also interpreted in terms of the excluded regions in the parameter space of the considered BSM scenarios. For DM production in the non-resonant scenario, masses of a new vector particle coupling to the DM candidate up to 2 TeV are excluded at 95% CL for mx =1 GeV, gx =1.0 and a =0.5, while in the resonant case, masses of a new scalar particle coupling to DM up to 3.4 TeV are excluded at 95% CL for mx = 10 GeV, y =0.4 and η =0.2. For the production of T singlets, couplings of these new quarks to top-quarks and W bosons, cW, above 0.7 are excluded for mT =1.4 TeV and below. A Event yields in the signal and control regions after the fit to data Thenumbersofevents observedinthesignalandcontrolregionsarepresentedin tables 5,6 and 7, together with the backgrounds estimated in the simultaneous fit to data in the corresponding regions under the background-only hypothesis. In table 5, 1L and 0L DM signal regionsaswellasthe1Land0L control regions are includedinthe fit. table 6includes 0L DM signal and control regions, while VLT signal and control regions are considered for table 7. Leptonic channel 1L-DM-SR 1L-TCR 1L-WCR t¯t 385 ± 41 12 100 ± 2000 8470 ± 800 Non-t¯t 117 ± 17 5540 ± 960 119 000 ± 26 000 Total 502 ± 62 17 700 ± 3100 127 000 ± 26 000 Data 511 17 662 127 286 Hadronic channel 0L-DM-SR 0L-TCR 0L-VCR t¯t 9900 ± 870 7160 ± 620 5900 ± 250 Single top 990 ± 110 273 ± 36 879 ± 98 W+jets 2050 ± 520 119 ± 65 23 100 ± 4900 Z+jets 2460 ± 460 135 ± 61 29 900 ± 4600 Multijet 87 ± 90 760 ± 350 0 ± 0 Other 328 ± 41 50.1 ± 5.6 2670 ± 310 Total 15 800 ± 1200 8490 ± 760 62 400 ± 1500 Data 15 781 8493 62 304 Table 5. Numbers of events observed in the signal and control regions used for the non-resonant dark-matter search, together with the estimated SM backgrounds in the fit to data, under the background-only hypothesis. The uncertainties include statistical and systematic uncertainties. The uncertainties in the individual backgrounds are correlated, and do not necessarily add in quadrature to the total background uncertainty. 0L-DM-SR 0L-TCR 0L-VCR t¯t 9690 ± 620 7110 ± 460 5710 ± 580 Single top 990 ± 110 282 ± 40 870 ± 110 W+jets 2070 ± 540 121 ± 67 23 000 ± 5000 Z+jets 2610 ± 530 149 ± 61 30 100 ± 4700 Other 330 ± 44 51.4 ± 6.1 2670 ± 310 Multijet 92 ± 88 800 ± 360 0 ± 0 Total 15 800 ± 370 8510 ± 280 62 300 ± 1400 Data 15 781 8493 62 304 Table 6. Numbers of events observed in the signal and control regions used for the resonant dark-matter search, together with the estimated SM backgrounds in the fit to data, under the background-only hypothesis. The uncertainties include statistical and systematic uncertainties. The uncertainties in the individual backgrounds are correlated, and do not necessarily add in quadrature to the total background uncertainty. 0L-VLT-SR 0L-TCR 0L-VCR t¯t 3560 ± 280 7160 ± 370 5310 ± 740 Single top 323 ± 45 278 ± 37 820 ± 120 W+jets 660 ± 200 126 ± 72 21 900 ± 5900 Z+jets 830 ± 180 160 ± 64 31 800 ± 4800 Other 82 ± 14 800 ± 320 2590 ± 340 Total 5460 ± 160 8530 ± 270 62 300 ± 1400 Data 5454 8493 62 304 Table 7. Numbers of events observed in the signal and control regions used for the vector-like Tquark search, together with the estimated SM backgrounds in the fit to data, under the backgroundonlyhypothesis. The uncertainties include statistical and systematic uncertainties. The uncertainties in the individual backgrounds are correlated, and do not necessarily add in quadrature to the total background uncertainty. Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZˇ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie SkΔlodowska-Curie Actions, European Union; Investissements d’ Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financedbyEU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref.[131]. Open Access. This article is distributed under the terms of the Creative Commons Attribution License(CC-BY 4.0), whichpermits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] V. Trimble, Existence and nature of dark matter in the universe, Ann. Rev. Astron.

Astrophys. 25 (1987) 425.

[2] G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175][INSPIRE]. [3] J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904][INSPIRE]. [4] ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126 [arXiv:1711.03301][INSPIRE]. [5] CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically → decaying W or Z boson at s = 13 TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE]. [6] ATLAS collaboration, Search for dark matter produced in association with bottom or top → quarks in s = 13 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 18[arXiv:1710.11412][INSPIRE]. [7] ATLAS collaboration, Search for top-squark pair production in final states with one lepton, → jets and missing transverse momentum using 36 fb−1 of s = 13 TeV pp collision data with the ATLAS detector, JHEP 06 (2018) 108 [arXiv:1711.11520][INSPIRE]. → [8] ATLAS collaboration, Search for dark matter at s = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848][INSPIRE]. [9] CMS collaboration, Search for new physics in the monophoton final state in proton-proton → collisions at s = 13 TeV, JHEP 10 (2017) 073 [arXiv:1706.03794][INSPIRE]. [10] ATLAS collaboration, Search for dark matter in events with a hadronically decaying vector → boson and missing transverse momentum in pp collisions at s = 13 TeV with the ATLAS detector, JHEP 10 (2018) 180 [arXiv:1807.11471][INSPIRE]. [11] ATLAS collaboration, Search for an invisibly decaying Higgs boson or dark matter → candidates produced in association with a Z boson in pp collisions at s = 13 TeV with the ATLAS detector, Phys. Lett. B 776 (2018) 318 [arXiv:1708.09624][INSPIRE]. [12] ATLAS collaboration, Search for dark matter produced in association with a Higgs boson decaying to b¯b using 36 fb−1 of pp collisions at → s = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 119 (2017) 181804 [arXiv:1707.01302][INSPIRE]. [13] ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to → two photons at s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 112004 [arXiv:1706.03948][INSPIRE]. [14] CMS collaboration, Search for associated production of dark matter with a Higgs boson decaying to b¯b or at → s = 13 TeV, JHEP 10 (2017) 180 [arXiv:1703.05236][INSPIRE]. [15] CMS collaboration, Search for dark matter produced in association with a Higgs boson → decaying to or ν+ν− at s = 13 TeV, JHEP 09 (2018) 046 [arXiv:1806.04771] [INSPIRE]. [16] J. Andrea, B. Fuks and F. Maltoni, Monotops at the LHC, Phys. Rev. D 84 (2011) 074025 [arXiv:1106.6199][INSPIRE]. [17] T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638][INSPIRE]. [18] G. Cacciapaglia et al., LHC constraints and potential on resonant monotop production, Eur. Phys. J. C 79 (2019) 174 [arXiv:1811.03626][INSPIRE]. [19] CDF collaboration, Search for a dark matter candidate produced in association with a → single top quark in pp¯collisions at s =1.96 TeV, Phys. Rev. Lett. 108 (2012) 201802 [arXiv:1202.5653][INSPIRE]. [20] CMS collaboration, Search for monotop signatures in proton-proton collisions at → s =8TeV, Phys. Rev. Lett. 114 (2015) 101801 [arXiv:1410.1149][INSPIRE]. [21] ATLAS collaboration, Search for invisible particles produced in association with → single-top-quarks in proton-proton collisions at s =8 TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 79 [arXiv:1410.5404][INSPIRE]. [22] CMS collaboration, Search for dark matter in events with energetic, hadronically decaying → top quarks and missing transverse momentum at s = 13 TeV, JHEP 06 (2018) 027 [arXiv:1801.08427][INSPIRE]. [23] ATLAS collaboration, Search for new phenomena in events with same-charge leptons and → b-jets in pp collisions at s = 13 TeV with the ATLAS detector, JHEP 12 (2018) 039 [arXiv:1807.11883][INSPIRE]. [24] N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021][INSPIRE]. [25] M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182][INSPIRE]. [26] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187. [27] K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089][INSPIRE]. [28] F. del Aguila and M.J. Bowick, The possibility of new fermions with 6I =0 mass, Nucl. Phys. B 224 (1983) 107 [INSPIRE]. [29] F. del Aguila, M. P´erez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett. B 492 (2000) 98 [hep-ph/0007160][INSPIRE]. [30] F. del Aguila, M. P´erez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316][INSPIRE]. [31] A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966][INSPIRE]. [32] A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987][INSPIRE]. [33] J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155][INSPIRE]. [34] J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. P´erez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572][INSPIRE]. [35] M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE]. [36] O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100][INSPIRE]. [37] F. del Aguila, L. Ametller, G.L. Kane and J. Vidal, Vector like fermion and standard Higgs production at hadron colliders, Nucl. Phys. B 334 (1990) 1 [INSPIRE]. [38] ATLAS collaboration, Search for production of vector-like quark pairs and of four top → quarks in the lepton-plus-jets final state in pp collisions at s =8 TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306][INSPIRE]. [39] ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same → charge in pp collisions at s =8 TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605][INSPIRE]. [40] ATLAS collaboration, Search for pair and single production of new heavy quarks that decay → to a Z boson and a third-generation quark in pp collisions at s =8 TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500][INSPIRE]. [41] CMS collaboration, Search for vector-like charge 2/3 T quarks in proton-proton collisions → at s =8 TeV, Phys. Rev. D 93 (2016) 012003 [arXiv:1509.04177][INSPIRE]. [42] ATLAS collaboration, Search for pair production of vector-like top quarks in events with → one lepton, jets and missing transverse momentum in s = 13 TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751][INSPIRE]. [43] ATLAS collaboration, Search for pair-and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision → data collected with the ATLAS detector at s = 13 TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555][INSPIRE]. [44] ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to → high-pT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at s = 13 TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347][INSPIRE]. [45] CMS collaboration, Search for pair production of vector-like quarks in the bW¯bW channel → from proton-proton collisions at s = 13 TeV, Phys. Lett. B 779 (2018) 82

[arXiv:1710.01539][INSPIRE]. [46] CMS collaboration, Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at → s = 13 TeV, JHEP 11 (2017) 085 [arXiv:1706.03408][INSPIRE]. [47] ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into → hadronic final states in pp collisions at s = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092005 [arXiv:1808.01771][INSPIRE]. [48] ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018) 089 [arXiv:1803.09678][INSPIRE]. [49] CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons → at s = 13 TeV, JHEP 08 (2018) 177 [arXiv:1805.04758][INSPIRE]. [50] ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of → the third-generation quarks at s = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343][INSPIRE]. [51] ATLAS collaboration, Search for single production of vector-like quarks decaying into Wb → in pp collisions at s =8TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 442 [arXiv:1602.05606][INSPIRE]. [52] ATLAS collaboration, Search for the production of single vector-like and excited quarks in → the Wt final state in pp collisions at s = 8 TeV with the ATLAS detector, JHEP 02 (2016) 110 [arXiv:1510.02664][INSPIRE]. [53] CMS collaboration, Search for single production of vector-like quarks decaying into a b → quark and a W boson in proton-proton collisions at s = 13 TeV, Phys. Lett. B 772 (2017) 634[arXiv:1701.08328][INSPIRE]. [54] CMS collaboration, Search for a heavy resonance decaying to a top quark and a vector-like → top quark at s = 13 TeV, JHEP 09 (2017) 053 [arXiv:1703.06352][INSPIRE]. [55] CMS collaboration, Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states, JHEP 04 (2017) 136 [arXiv:1612.05336][INSPIRE]. [56] CMS collaboration, Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state, Phys. Lett. B 771 (2017) 80 [arXiv:1612.00999][INSPIRE]. [57] CMS collaboration, Search for single production of a vector-like T quark decaying to a Z → boson and a top quark in proton-proton collisions at s = 13 TeV, Phys. Lett. B 781 (2018) 574 [arXiv:1708.01062][INSPIRE]. [58] CMS collaboration, Search for single production of vector-like quarks decaying to a Z boson → and a top or a bottom quark in proton-proton collisions at s = 13 TeV, JHEP 05 (2017) 029[arXiv:1701.07409][INSPIRE]. [59] D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE]. [60] J. Wang, C.S. Li, D.Y. Shao and H. Zhang, Search for the signal of monotop production at the early LHC, Phys. Rev. D 86 (2012) 034008 [arXiv:1109.5963][INSPIRE]. [61] ATLAS collaboration, TheATLAS experiment at the CERNLarge Hadron Collider, 2008 JINST 3 S08003[INSPIRE]. [62] ATLAS collaboration, ATLAS insertable b-layer technical design report, ATLAS-TDR-19 (2010). [63] ATLAS IBL collaboration, Production and integration of the ATLAS insertable B-layer, 2018 JINST 13 T05008[arXiv:1803.00844][INSPIRE]. [64] ATLAS collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317 [arXiv:1611.09661][INSPIRE]. [65] I. Boucheneb, G. Cacciapaglia, A. Deandrea and B. Fuks, Revisiting monotop production at the LHC, JHEP 01 (2015) 017 [arXiv:1407.7529][INSPIRE]. [66] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301][INSPIRE]. [67] A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921][INSPIRE]. [68] C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040][INSPIRE]. [69] NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849][INSPIRE]. [70] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820][INSPIRE]. [71] ATLAS collaboration, ATLAS run 1 PYTHIA8 tunes, ATL-PHYS-PUB-2014-021 (2014). [72] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303][INSPIRE]. [73] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146][INSPIRE]. [74] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092][INSPIRE]. [75] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581][INSPIRE]. [76] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088][INSPIRE]. [77] R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP 09 (2012) 130 [arXiv:1207.5391] [INSPIRE]. [78] E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450][INSPIRE]. [79] S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s-and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011][arXiv:0907.4076][INSPIRE]. [80] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175][INSPIRE]. [81] J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195][INSPIRE]. [82] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010)

074018[arXiv:1005.3457][INSPIRE]. [83] H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010)

074024[arXiv:1007.2241][INSPIRE]. [84] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007

[arXiv:0811.4622][INSPIRE]. [85] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674][INSPIRE]. [86] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys.

Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206][INSPIRE]. [87] S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027][INSPIRE]. [88] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030][INSPIRE]. [89] NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040

[arXiv:1410.8849][INSPIRE]. [90] ATLAS collaboration, Measurement of the Z/� * boson transverse momentum distribution → in pp collisions at s =7TeV with the ATLAS detector, JHEP 09 (2014) 145

[arXiv:1406.3660][INSPIRE]. [91] M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930

[arXiv:1112.5675][INSPIRE]. [92] S. Catani et al., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120][INSPIRE]. [93] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462

(2001) 152 [INSPIRE]. [94] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010)

823[arXiv:1005.4568][INSPIRE]. [95] GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506

(2003) 250 [INSPIRE]. [96] ATLAS collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 (2010). [97] ATLAS collaboration, Summary of ATLAS PYTHIA 8 tunes, ATL-PHYS-PUB-2012-003

(2012). [98] ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016). [99] ATLAS collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77 (2017) 490 [arXiv:1603.02934][INSPIRE]. [100] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in → proton–proton collision data at s = 13 TeV, Eur. Phys. J. C 76 (2016) 292

[arXiv:1603.05598][INSPIRE]. [101] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189][INSPIRE]. [102] M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896[arXiv:1111.6097][INSPIRE]. [103] ATLAS collaboration, Jet calibration and systematic uncertainties for jets reconstructed in → the ATLAS detector at s = 13 TeV, ATL-PHYS-PUB-2015-015 (2015). [104] ATLAS collaboration, Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2015-029 (2015). [105] ATLAS collaboration, Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018 (2014). [106] D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342][INSPIRE]. [107] ATLAS collaboration, In-situ measurements of the ATLAS large-radius jet response in 13 TeV pp collisions, ATLAS-CONF-2017-063 (2017). [108] ATLAS collaboration, Boosted hadronic top identification at ATLAS for early 13 TeV data, ATL-PHYS-PUB-2015-053 (2015). [109] J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268][INSPIRE]. [110] ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using → lepton-plus-jets events in proton–proton collisions at s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823][INSPIRE]. [111] ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008[arXiv:1512.01094][INSPIRE]. [112] ATLAS collaboration, Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run, ATL-PHYS-PUB-2016-012 (2016). [113] ATLAS collaboration, Calibration of light-flavour jet b-tagging rates on ATLAS → proton-proton collision data at s = 13 TeV, ATLAS-CONF-2018-006 (2018). [114] ATLAS collaboration, Measurement of b-tagging Efficiency of c-jets in tt¯Events Using a Likelihood Approach with the ATLAS Detector, ATLAS-CONF-2018-001 (2018). [115] ATLAS collaboration, Expected performance of missing transverse momentum → reconstruction for the ATLAS detector at s = 13 TeV, ATL-PHYS-PUB-2015-023 (2015). [116] ATLAS collaboration, Performance of missing transverse momentum reconstruction for the → ATLAS detector in the first proton-proton collisions at at s = 13 TeV, ATL-PHYS-PUB-2015-027 (2015). [117] ATLAS collaboration, Estimation of non-prompt and fake lepton backgrounds in final states → with top quarks produced in proton-proton collisions at s =8TeV with the ATLAS Detector, ATLAS-CONF-2014-058 (1951336). [118] ATLAS collaboration, Jet energy scale measurements and their systematic uncertainties in → proton-proton collisions at s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002[arXiv:1703.09665][INSPIRE]. → [119] ATLAS collaboration, Luminosity determination in pp collisions at s =8 TeV using the ATLAS detector at the LHC, Eur. Phys. J. C 76 (2016) 653 [arXiv:1608.03953][INSPIRE]. [120] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, 2018 JINST 13 P07017[INSPIRE]. [121] M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883][INSPIRE]. [122] ATLAS collaboration, Comparison of Monte Carlo generator predictions to ATLAS measurements of top pair production at 7TeV, ATL-PHYS-PUB-2015-002 (2015). [123] S. Frixione et al., Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067][INSPIRE]. [124] ATLAS collaboration, Analysis of the Wtb vertex from the measurement of triple-differential angular decay rates of single top quarks produced in the t-channel at → s =8TeV with the ATLAS detector, JHEP 12 (2017) 017 [arXiv:1707.05393][INSPIRE]. [125] ATLAS collaboration, Measurement of the cross-section for W boso production in → association with b-jets in pp collisions at s =7TeV with the ATLAS detector, JHEP 06 (2013) 084 [arXiv:1302.2929][INSPIRE]. [126] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001[arXiv:1510.03865][INSPIRE]. [127] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling, (2003). [128] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727][INSPIRE]. [129] ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the → lepton+jets channel in pp collisions at s = 13 TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727][INSPIRE]. [130] ATLAS collaboration, Measurements of tt¯differential cross-sections of highly boosted top → quarks decaying to all-hadronic final states in pp collisions at s = 13 TeV using the ATLAS detector, Phys. Rev. D 98 (2018) 012003 [arXiv:1801.02052][INSPIRE]. [131] ATLAS collaboration, ATLAS computing acknowledgements, ATL-GEN-PUB-2016-002 (2016). M. Aaboud34d, G. Aad99, B. Abbott125, O. Abdinov13,*, B. Abeloos129, D.K. Abhayasinghe91 , The ATLAS collaboration S.H. Abidi164, O.S. AbouZeid39, N.L. Abraham153, H. Abramowicz158 , H. Abreu157 , Y. Abulaiti6 , B.S. Acharya64a,64b,p, S. Adachi160, L. Adam97, L. Adamczyk81a, J. Adelman119 , M. Adersberger112, A. Adiguzel12c,ai, T. Adye141, A.A. Affolder143, Y. Afik157 , C. Agheorghiesei27c, J.A. Aguilar-Saavedra137f,137a,ah, F. Ahmadov77,af , G. Aielli71a,71b , S. Akatsuka83, T.P.A. ˚, Akesson94, E. Akilli52, A.V. Akimov108 , G.L. Alberghi23b,23a, J. Albert173 P. Albicocco49, M.J. Alconada Verzini86, S. Alderweireldt117, M. Aleksa35, I.N. Aleksandrov77 , C. Alexa27b, T. Alexopoulos10, M. Alhroob125, B. Ali139, G. Alimonti66a, J. Alison36 , S.P. Alkire145, C. Allaire129, B.M.M. Allbrooke153, B.W. Allen128 , P.P. Allport21 , A. Aloisio67a,67b, A. Alonso39, F. Alonso86, C. Alpigiani145, A.A. Alshehri55, M.I. Alstaty99 , B. Alvarez Gonzalez35,D. ´ , Alvarez Piqueras171, M.G. Alviggi67a,67b, B.T. Amadio18 Y. Amaral Coutinho78b, A. Ambler101, L. Ambroz132, C. Amelung26, D. Amidei103 , S.P. Amor Dos Santos137a,137c , S. Amoroso44, C.S. Amrouche52, F. An76, C. Anastopoulos146 , L.S. Ancu52, N. Andari142, T. Andeen11, C.F. Anders59b, J.K. Anders20, K.J. Anderson36 , A. Andreazza66a,66b, V. Andrei59a, C.R. Anelli173, S. Angelidakis37, I. Angelozzi118 , A. Angerami38, A.V. Anisenkov120b,120a, A. Annovi69a , C. Antel59a, M.T. Anthony146 , M. Antonelli49, D.J.A. Antrim168, F. Anulli70a, M. Aoki79, J.A. Aparisi Pozo171 , L. Aperio Bella35, G. Arabidze104 , J.P. Araque137a, V. Araujo Ferraz78b, R. Araujo Pereira78b , A.T.H. Arce47, R.E. Ardell91, F.A. Arduh86, J-F. Arguin107 , S. Argyropoulos75 , A.J. Armbruster35, L.J. Armitage90, A. Armstrong168, O. Arnaez164 , H. Arnold118, M. Arratia31 , O. Arslan24, A. Artamonov109,*, G. Artoni132 , S. Artz97, S. Asai160, N. Asbah57 , E.M. Asimakopoulou169, L. Asquith153, K. Assamagan29, R. Astalos28a, R.J. Atkin32a , M. Atkinson170, N.B. Atlay148, K. Augsten139, G. Avolio35, R. Avramidou58a, M.K. Ayoub15a , A.M. Azoulay165b, G. Azuelos107,av, A.E. Baas59a , M.J. Baca21, H. Bachacou142, K. Bachas65a,65b , M. Backes132, P. Bagnaia70a,70b, M. Bahmani82, H. Bahrasemani149, A.J. Bailey171 , J.T. Baines141, M. Bajic39, C. Bakalis10, O.K. Baker180 , P.J. Bakker118, D. Bakshi Gupta8 , S. Balaji154 , E.M. Baldin120b,120a , P. Balek177, F. Balli142, W.K. Balunas134 , J. Balz97 , E. Banas82, A. Bandyopadhyay24, S. Banerjee178,l, A.A.E. Bannoura179, L. Barak158 , W.M. Barbe37, E.L. Barberio102, D. Barberis53b,53a, M. Barbero99, T. Barillari113 , M-S. Barisits35, J. Barkeloo128, T. Barklow150, R. Barnea157 , S.L. Barnes58c , B.M. Barnett141 , R.M. Barnett18, Z. Barnovska-Blenessy58a, A. Baroncelli72a, G. Barone29, A.J. Barr132 , L. Barranco Navarro171, F. Barreiro96, J. Barreiro Guimar˜aes da Costa15a, R. Bartoldus150 , A.E. Barton87, P. Bartos28a, A. Basalaev135, A. Bassalat129, R.L. Bates55, S.J. Batista164 , S. Batlamous34e, J.R. Batley31, M. Battaglia143 , M. Bauce70a,70b, F. Bauer142, K.T. Bauer168 , H.S. Bawa150,n, J.B. Beacham123, T. Beau133, P.H. Beauchemin167, P. Bechtle24, H.C. Beck51 , H.P. Beck20,s, K. Becker50, M. Becker97, C. Becot44, A. Beddall12d, A.J. Beddall12a , V.A. Bednyakov77, M. Bedognetti118, C.P. Bee152, T.A. Beermann74, M. Begalli78b , M. Begel29 , A. Behera152 , J.K. Behr44, A.S. Bell92, G. Bella158 , L. Bellagamba23b, A. Bellerive33 , M. Bellomo157, P. Bellos9, K. Belotskiy110 , N.L. Belyaev110, O. Benary158,*, D. Benchekroun34a , M. Bender112, N. Benekos10, Y. Benhammou158, E. Benhar Noccioli180, J. Benitez75 , D.P. Benjamin47, M. Benoit52, J.R. Bensinger26, S. Bentvelsen118 , L. Beresford132, M. Beretta49 , D. Berge44, E. Bergeaas Kuutmann169, N. Berger5, B. Bergmann139 , L.J. Bergsten26 , J. Beringer18, S. Berlendis7, N.R. Bernard100, G. Bernardi133, C. Bernius150, F.U. Bernlochner24 , T. Berry91, P. Berta97, C. Bertella15a, G. Bertoli43a,43b, I.A. Bertram87, G.J. Besjes39 , O. Bessidskaia Bylund179, M. Bessner44, N. Besson142, A. Bethani98, S. Bethke113, A. Betti24 , A.J. Bevan90, J. Beyer113 , R. Bi136, R.M. Bianchi136, O. Biebel112, D. Biedermann19, R. Bielski35 , K. Bierwagen97, N.V. Biesuz69a,69b, M. Biglietti72a, T.R.V. Billoud107, M. Bindi51, A. Bingul12d , C. Bini70a,70b, S. Biondi23b,23a , M. Birman177, T. Bisanz51, J.P. Biswal158 , C. Bittrich46 , D.M. Bjergaard47, J.E. Black150, K.M. Black25, T. Blazek28a, I. Bloch44, C. Blocker26, A. Blue55 , U. Blumenschein90, Dr. Blunier144a , G.J. Bobbink118, V.S. Bobrovnikov120b,120a, S.S. Bocchetta94 , A. Bocci47, D. Boerner179, D. Bogavac112, A.G. Bogdanchikov120b,120a, C. Bohm43a , V. Boisvert91, P. Bokan169, T. Bold81a, A.S. Boldyrev111, A.E. Bolz59b , M. Bomben133 , M. Bona90, J.S. Bonilla128 , M. Boonekamp142 , A. Borisov121 , G. Borissov87, J. Bortfeldt35 , D. Bortoletto132, V. Bortolotto71a,71b, D. Boscherini23b, M. Bosman14, J.D. Bossio Sola30 , K. Bouaouda34a, J. Boudreau136 , E.V. Bouhova-Thacker87, D. Boumediene37, C. Bourdarios129 , S.K. Boutle55, A. Boveia123, J. Boyd35, D. Boye32b,ap, I.R. Boyko77, A.J. Bozson91, J. Bracinik21 , N. Brahimi99, A. Brandt8, G. Brandt179, O. Brandt59a , F. Braren44, U. Bratzler161, B. Brau100 , J.E. Brau128, W.D. Breaden Madden55, K. Brendlinger44, L. Brenner44, R. Brenner169 , S. Bressler177, B. Brickwedde97, D.L. Briglin21, D. Britton55, D. Britzger113, I. Brock24 , R. Brock104, G. Brooijmans38, T. Brooks91, W.K. Brooks144b , E. Brost119, J.H Broughton21 , P.A. Bruckman de Renstrom82, D. Bruncko28b, A. Bruni23b, G. Bruni23b , L.S. Bruni118 , S. Bruno71a,71b, B.H. Brunt31, M. Bruschi23b, N. Bruscino136, P. Bryant36, L. Bryngemark44 , T. Buanes17, Q. Buat35, P. Buchholz148 , A.G. Buckley55, I.A. Budagov77, M.K. Bugge131 , F. B¨uhrer50, O. Bulekov110 , D. Bullock8, T.J. Burch119, S. Burdin88, C.D. Burgard118 , A.M. Burger5, B. Burghgrave119 , K. Burka82, S. Burke141, I. Burmeister45, J.T.P. Burr132 , V. B¨uscher97, E. Buschmann51, P. Bussey55, J.M. Butler25, C.M. Buttar55, J.M. Butterworth92 , P. Butti35, W. Buttinger35, A. Buzatu155, A.R. Buzykaev120b,120a , G. Cabras23b,23a , S. Cabrera Urb´an171, D. Caforio139, H. Cai170, V.M.M. Cairo2, O. Cakir4a, N. Calace52 , P. Calafiura18, A. Calandri99, G. Calderini133, P. Calfayan63, G. Callea55, L.P. Caloba78b , S. Calvente Lopez96, D. Calvet37, S. Calvet37, T.P. Calvet152, M. Calvetti69a,69b , R. Camacho Toro133, S. Camarda35, D. Camarero Munoz96, P. Camarri71a,71b, D. Cameron131 , R. Caminal Armadans100, C. Camincher35, S. Campana35, M. Campanelli92, A. Camplani39 , A. Campoverde148, V. Canale67a,67b, M. Cano Bret58c , J. Cantero126, T. Cao158 , Y. Cao170 , M.D.M. Capeans Garrido35, I. Caprini27b, M. Caprini27b, M. Capua40b,40a, R.M. Carbone38 , R. Cardarelli71a, F.C. Cardillo146, I. Carli140, T. Carli35, G. Carlino67a , B.T. Carlson136 , 66a,66b L. Carminati66a,66b, R.M.D. Carney43a,43b, S. Caron117, E. Carquin144b, S. Carr´a, G.D. Carrillo-Montoya35, D. Casadei32b, M.P. Casado14,g, A.F. Casha164 , D.W. Casper168 , R. Castelijn118, F.L. Castillo171, V. Castillo Gimenez171, N.F. Castro137a,137e, A. Catinaccio35 , J.R. Catmore131, A. Cattai35, J. Caudron24, V. Cavaliere29, E. Cavallaro14, D. Cavalli66a , M. Cavalli-Sforza14, V. Cavasinni69a,69b, E. Celebi12b, F. Ceradini72a,72b, L. Cerda Alberich171 , A.S. Cerqueira78a, A. Cerri153 , L. Cerrito71a,71b , F. Cerutti18, A. Cervelli23b,23a , S.A. Cetin12b , A. Chafaq34a, D. Chakraborty119, S.K. Chan57, W.S. Chan118 , Y.L. Chan61a, J.D. Chapman31 , B. Chargeishvili156b, D.G. Charlton21, C.C. Chau33, C.A. Chavez Barajas153, S. Che123 , A. Chegwidden104 , S. Chekanov6, S.V. Chekulaev165a, G.A. Chelkov77,au, M.A. Chelstowska35 , C. Chen58a , C.H. Chen76, H. Chen29, J. Chen58a, J. Chen38, S. Chen134, S.J. Chen15c , X. Chen15b,at, Y. Chen80, Y-H. Chen44, H.C. Cheng103, H.J. Cheng15d , A. Cheplakov77 , E. Cheremushkina121, R. Cherkaoui El Moursli34e, E. Cheu7, K. Cheung62, T.J.A. Cheval´erias142 , L. Chevalier142, V. Chiarella49, G. Chiarelli69a, G. Chiodini65a, A.S. Chisholm35,21, A. Chitan27b , I. Chiu160, Y.H. Chiu173 , M.V. Chizhov77, K. Choi63, A.R. Chomont129, S. Chouridou159 , Y.S. Chow118, V. Christodoulou92, M.C. Chu61a, J. Chudoba138, A.J. Chuinard101 , J.J. Chwastowski82, L. Chytka127, D. Cinca45, V. Cindro89, I.A. Cioar˘a24, A. Ciocio18 , F. Cirotto67a,67b , Z.H. Citron177, M. Citterio66a , A. Clark52, M.R. Clark38, P.J. Clark48 , C. Clement43a,43b, Y. Coadou99, M. Cobal64a,64c , A. Coccaro53b , J. Cochran76, H. Cohen158 , 137a,i A.E.C. Coimbra177, L. Colasurdo117, B. Cole38, A.P. Colijn118, J. Collot56, P. Conde Mui˜no, E. Coniavitis50, S.H. Connell32b , I.A. Connelly98, S. Constantinescu27b, F. Conventi67a,aw , A.M. Cooper-Sarkar132, F. Cormier172, K.J.R. Cormier164, L.D. Corpe92, M. Corradi70a,70b , E.E. Corrigan94, F. Corriveau101,ad, A. Cortes-Gonzalez35, M.J. Costa171, F. Costanza5 , D. Costanzo146, G. Cottin31, G. Cowan91, B.E. Cox98, J. Crane98, K. Cranmer122, S.J. Crawley55 , R.A. Creager134, G. Cree33, S. Cr´ep´e-Renaudin56, F. Crescioli133, M. Cristinziani24, V. Croft122 , G. Crosetti40b,40a , A. Cueto96, T. Cuhadar Donszelmann146 , A.R. Cukierman150, S. Czekierda82 , P. Czodrowski35, M.J. Da Cunha Sargedas De Sousa58b, C. Da Via98, W. Dabrowski81a , T. Dado28a,y, S. Dahbi34e, T. Dai103, F. Dallaire107, C. Dallapiccola100 , M. Dam39 , G. D’amen23b,23a , J. Damp97, J.R. Dandoy134, M.F. Daneri30, N.P. Dang178,l, N.D Dann98 , M. Danninger172, V. Dao35, G. Darbo53b , S. Darmora8, O. Dartsi5, A. Dattagupta128 , T. Daubney44, S. D’Auria66a,66b, W. Davey24, C. David44, T. Davidek140 , D.R. Davis47 , E. Dawe102, I. Dawson146, K. De8, R. De Asmundis67a, A. De Benedetti125, M. De Beurs118 , S. De Castro23b,23a, S. De Cecco70a,70b , N. De Groot117, P. de Jong118, H. De la Torre104 , F. De Lorenzi76, A. De Maria69a,69b, D. De Pedis70a, A. De Salvo70a, U. De Sanctis71a,71b , M. De Santis71a,71b, A. De Santo153, K. De Vasconcelos Corga99, J.B. De Vivie De Regie129 , C. Debenedetti143, D.V. Dedovich77, N. Dehghanian3, M. Del Gaudio40b,40a, J. Del Peso96 , Y. Delabat Diaz44, D. Delgove129, F. Deliot142, C.M. Delitzsch7, M. Della Pietra67a,67b , D. Della Volpe52, A. Dell’Acqua35, L. Dell’Asta25, M. Delmastro5, C. Delporte129, P.A. Delsart56 , D.A. DeMarco164, S. Demers180, M. Demichev77, S.P. Denisov121 , D. Denysiuk118, L. D’Eramo133 , D. Derendarz82, J.E. Derkaoui34d, F. Derue133, P. Dervan88, K. Desch24, C. Deterre44 , K. Dette164, M.R. Devesa30, P.O. Deviveiros35, A. Dewhurst141, S. Dhaliwal26, F.A. Di Bello52 , A. Di Ciaccio71a,71b , L. Di Ciaccio5, W.K. Di Clemente134, C. Di Donato67a,67b , A. Di Girolamo35 , G. Di Gregorio69a,69b, B. Di Micco72a,72b, R. Di Nardo100, K.F. Di Petrillo57, R. Di Sipio164 , D. Di Valentino33, C. Diaconu99, M. Diamond164, F.A. Dias39, T. Dias Do Vale137a , M.A. Diaz144a, J. Dickinson18, E.B. Diehl103, J. Dietrich19, S. D´ıez Cornell44, A. Dimitrievska18 , J. Dingfelder24, F. Dittus35, F. Djama99, T. Djobava156b, J.I. Djuvsland59a, M.A.B. Do Vale78c , M. Dobre27b, D. Dodsworth26, C. Doglioni94, J. Dolejsi140, Z. Dolezal140, M. Donadelli78d , J. Donini37, A. D’onofrio90, M. D’Onofrio88, J. Dopke141, A. Doria67a , M.T. Dova86, A.T. Doyle55 , E. Drechsler51, E. Dreyer149, T. Dreyer51, Y. Du58b, F. Dubinin108, M. Dubovsky28a , A. Dubreuil52, E. Duchovni177, G. Duckeck112, A. Ducourthial133, O.A. Ducu107,x, D. Duda113 , A. Dudarev35, A.C. Dudder97, E.M. Duffield18, L. Duflot129, M. D¨uhrssen35, C. D¨ulsen179 , M. Dumancic177, A.E. Dumitriu27b,e, A.K. Duncan55, M. Dunford59a, A. Duperrin99 , H. Duran Yildiz4a, M. D¨uren54, A. Durglishvili156b, D. Duschinger46, B. Dutta44, D. Duvnjak1 , M. Dyndal44, S. Dysch98, B.S. Dziedzic82, C. Eckardt44, K.M. Ecker113 , R.C. Edgar103 , T. Eifert35, G. Eigen17, K. Einsweiler18, T. Ekelof169, M. El Kacimi34c, R. El Kosseifi99 , V. Ellajosyula99, M. Ellert169, F. Ellinghaus179, A.A. Elliot90, N. Ellis35, J. Elmsheuser29 , M. Elsing35, D. Emeliyanov141, A. Emerman38, Y. Enari160, J.S. Ennis175, M.B. Epland47 , J. Erdmann45, A. Ereditato20, S. Errede170 , M. Escalier129, C. Escobar171, O. Estrada Pastor171 , A.I. Etienvre142, E. Etzion158 , H. Evans63, A. Ezhilov135 , M. Ezzi34e, F. Fabbri55 , L. Fabbri23b,23a , V. Fabiani117 , G. Facini92, R.M. Faisca Rodrigues Pereira137a , R.M. Fakhrutdinov121, S. Falciano70a, P.J. Falke5, S. Falke5, J. Faltova140, Y. Fang15a , M. Fanti66a,66b, A. Farbin8, A. Farilla72a, E.M. Farina68a,68b, T. Farooque104, S. Farrell18 , S.M. Farrington175, P. Farthouat35, F. Fassi34e, P. Fassnacht35, D. Fassouliotis9 , M. Faucci Giannelli48, A. Favareto53b,53a, W.J. Fawcett31, L. Fayard129 , O.L. Fedin135,q, W. Fedorko172, M. Feickert41, S. Feigl131, L. Feligioni99, C. Feng58b , E.J. Feng35, M. Feng47 , M.J. Fenton55, A.B. Fenyuk121, L. Feremenga8, J. Ferrando44, A. Ferrari169, P. Ferrari118 , R. Ferrari68a, D.E. Ferreira de Lima59b, A. Ferrer171 , D. Ferrere52, C. Ferretti103, F. Fiedler97 , A. Filipˇciˇc89, F. Filthaut117, K.D. Finelli25, M.C.N. Fiolhais137a,137c,a, L. Fiorini171 , C. Fischer14 , W.C. Fisher104 , N. Flaschel44, I. Fleck148, P. Fleischmann103, R.R.M. Fletcher134, T. Flick179 , B.M. Flierl112, L.M. Flores134, L.R. Flores Castillo61a, F.M. Follega73a,73b, N. Fomin17 , G.T. Forcolin73a,73b, A. Formica142, F.A. F¨orster14, A.C. Forti98, A.G. Foster21, D. Fournier129 , H. Fox87, S. Fracchia146 , P. Francavilla69a,69b, M. Franchini23b,23a , S. Franchino59a , D. Francis35 , L. Franconi143 , M. Franklin57, M. Frate168, M. Fraternali68a,68b, A.N. Fray90, D. Freeborn92 , S.M. Fressard-Batraneanu35, B. Freund107, W.S. Freund78b, E.M. Freundlich45, D.C. Frizzell125 , D. Froidevaux35, J.A. Frost132, C. Fukunaga161, E. Fullana Torregrosa171, T. Fusayasu114 , J. Fuster171, O. Gabizon157, A. Gabrielli23b,23a, A. Gabrielli18, G.P. Gach81a, S. Gadatsch52 , P. Gadow113, G. Gagliardi53b,53a, L.G. Gagnon107, C. Galea27b, B. Galhardo137a,137c , E.J. Gallas132, B.J. Gallop141, P. Gallus139, G. Galster39, R. Gamboa Goni90, K.K. Gan123 , S. Ganguly177, J. Gao58a, Y. Gao88, Y.S. Gao150,n, C. Garc´ıa171, J.E. Garc´ıa Navarro171 , J.A. Garc´ıa Pascual15a, M. Garcia-Sciveres18, R.W. Gardner36, N. Garelli150, S. Gargiulo50 , V. Garonne131, K. Gasnikova44, A. Gaudiello53b,53a, G. Gaudio68a, I.L. Gavrilenko108 , A. Gavrilyuk109, C. Gay172, G. Gaycken24, E.N. Gazis10, C.N.P. Gee141, J. Geisen51, M. Geisen97 , M.P. Geisler59a, K. Gellerstedt43a,43b, C. Gemme53b, M.H. Genest56, C. Geng103 , S. Gentile70a,70b , S. George91, D. Gerbaudo14, G. Gessner45, S. Ghasemi148, M. Ghasemi Bostanabad173 , M. Ghneimat24, B. Giacobbe23b, S. Giagu70a,70b, N. Giangiacomi23b,23a, P. Giannetti69a , A. Giannini67a,67b, S.M. Gibson91, M. Gignac143, D. Gillberg33, G. Gilles179, D.M. Gingrich3,av , M.P. Giordani64a,64c, F.M. Giorgi23b , P.F. Giraud142, P. Giromini57, G. Giugliarelli64a,64c , D. Giugni66a, F. Giuli132 , M. Giulini59b, S. Gkaitatzis159 , I. Gkialas9,k, E.L. Gkougkousis14 , P. Gkountoumis10, L.K. Gladilin111, C. Glasman96, J. Glatzer14, P.C.F. Glaysher44, A. Glazov44 , M. Goblirsch-Kolb26, J. Godlewski82, S. Goldfarb102, T. Golling52, D. Golubkov121 , A. Gomes137a,137b, R. Goncalves Gama78a , R. Gon¸calo137a , G. Gonella50, L. Gonella21 , A. Gongadze77, F. Gonnella21, J.L. Gonski57, S. Gonz´alez de la Hoz171, S. Gonzalez-Sevilla52 , L. Goossens35,P.A. Gorbounov109, H.A. Gordon29, B. Gorini35, E. Gorini65a,65b, A. Goriˇsek89 , A.T. Goshaw47, C. G¨ossling45, M.I. Gostkin77, C.A. Gottardo24, C.R. Goudet129, D. Goujdami34c , A.G. Goussiou145, N. Govender32b,c, C. Goy5, E. Gozani157, I. Grabowska-Bold81a , P.O.J. Gradin169, E.C. Graham88, J. Gramling168, E. Gramstad131 , S. Grancagnolo19 , V. Gratchev135, P.M. Gravila27f , F.G. Gravili65a,65b , C. Gray55, H.M. Gray18 , Z.D. Greenwood93,ak, C. Grefe24, K. Gregersen94, I.M. Gregor44, P. Grenier150, K. Grevtsov44 , N.A. Grieser125, J. Griffiths8, A.A. Grillo143, K. Grimm150,b, S. Grinstein14,z, Ph. Gris37 , J.-F. Grivaz129 , S. Groh97, E. Gross177, J. Grosse-Knetter51, G.C. Grossi93, Z.J. Grout92 , C. Grud103 , A. Grummer116, L. Guan103, W. Guan178, J. Guenther35, A. Guerguichon129 , F. Guescini165a, D. Guest168 , R. Gugel50, B. Gui123, T. Guillemin5, S. Guindon35, U. Gul55 , C. Gumpert35, J. Guo58c, W. Guo103, Y. Guo58a,t, Z. Guo99, R. Gupta44, S. Gurbuz12c , G. Gustavino125, B.J. Gutelman157 , P. Gutierrez125, C. Gutschow92, C. Guyot142, M.P. Guzik81a , C. Gwenlan132, C.B. Gwilliam88, A. Haas122, C. Haber18, H.K. Hadavand8, N. Haddad34e , A. Hadef58a, S. Hageb¨ock24, M. Hagihara166, H. Hakobyan181,*, M. Haleem174, J. Haley126 , G. Halladjian104, G.D. Hallewell99, K. Hamacher179, P. Hamal127, K. Hamano173, A. Hamilton32a , G.N. Hamity146, K. Han58a,aj, L. Han58a, S. Han15d, K. Hanagaki79,v, M. Hance143 , D.M. Handl112, B. Haney134 , R. Hankache133, P. Hanke59a , E. Hansen94, J.B. Hansen39 , J.D. Hansen39, M.C. Hansen24, P.H. Hansen39, E.C. Hanson98, K. Hara166, A.S. Hard178 , T. Harenberg179, S. Harkusha105 , P.F. Harrison175 , N.M. Hartmann112, Y. Hasegawa147 , A. Hasib48, S. Hassani142 , S. Haug20, R. Hauser104, L. Hauswald46, L.B. Havener38 , M. Havranek139, C.M. Hawkes21, R.J. Hawkings35, D. Hayden104 , C. Hayes152, C.P. Hays132 , J.M. Hays90, H.S. Hayward88, S.J. Haywood141, M.P. Heath48, V. Hedberg94, L. Heelan8 , S. Heer24, K.K. Heidegger50, J. Heilman33, S. Heim44, T. Heim18, B. Heinemann44,aq, J.J. Heinrich112, L. Heinrich122, C. Heinz54, J. Hejbal138, L. Helary35, A. Held172, S. Hellesund131 , C.M. Helling143, S. Hellman43a,43b, C. Helsens35, R.C.W. Henderson87, Y. Heng178 , S. Henkelmann172, A.M. Henriques Correia35, G.H. Herbert19, H. Herde26, V. Herget174 , Y. Hern´andez Jim´enez32c, H. Herr97, M.G. Herrmann112, T. Herrmann46, G. Herten50 , R. Hertenberger112, L. Hervas35, T.C. Herwig134, G.G. Hesketh92, N.P. Hessey165a , A. Higashida160, S. Higashino79, E. Hig´on-Rodriguez171, K. Hildebrand36, E. Hill173, J.C. Hill31 , K.K. Hill29, K.H. Hiller44, S.J. Hillier21, M. Hils46, I. Hinchliffe18, M. Hirose130 , D. Hirschbuehl179, B. Hiti89, O. Hladik138, D.R. Hlaluku32c, X. Hoad48, J. Hobbs152, N. Hod165a , M.C. Hodgkinson146, A. Hoecker35, M.R. Hoeferkamp116, F. Hoenig112, D. Hohn24, D. Hohov129 , T.R. Holmes36, M. Holzbock112, M. Homann45, S. Honda166, T. Honda79, T.M. Hong136 , A. H¨onle113, B.H. Hooberman170, W.H. Hopkins128, Y. Horii115, P. Horn46, A.J. Horton149 , L.A. Horyn36, J-Y. Hostachy56, A. Hostiuc145, S. Hou155, A. Hoummada34a , J. Howarth98 , J. Hoya86, M. Hrabovsky127, J. Hrdinka35, I. Hristova19, J. Hrivnac129, A. Hrynevich106 , T. Hryn’ova5, P.J. Hsu62, S.-C. Hsu145, Q. Hu29, S. Hu58c, Y. Huang15a , Z. Hubacek139 , F. Hubaut99, M. Huebner24, F. Huegging24, T.B. Huffman132, M. Huhtinen35, R.F.H. Hunter33 , P. Huo152, A.M. Hupe33, N. Huseynov77,af , J. Huston104, J. Huth57, R. Hyneman103 , G. Iacobucci52, G. Iakovidis29, I. Ibragimov148, L. Iconomidou-Fayard129, Z. Idrissi34e, P. Iengo35 , R. Ignazzi39, O. Igonkina118,ab, R. Iguchi160 , T. Iizawa52, Y. Ikegami79, M. Ikeno79, D. Iliadis159 , N. Ilic117, F. Iltzsche46, G. Introzzi68a,68b, M. Iodice72a, K. Iordanidou38, V. Ippolito70a,70b , M.F. Isacson169 , N. Ishijima130, M. Ishino160, M. Ishitsuka162, W. Islam126, C. Issever132 , S. Istin157, F. Ito166, J.M. Iturbe Ponce61a, R. Iuppa73a,73b, A. Ivina177, H. Iwasaki79, J.M. Izen42 , V. Izzo67a, P. Jacka138, P. Jackson1, R.M. Jacobs24, V. Jain2, G. J¨akel179, K.B. Jakobi97 , K. Jakobs50, S. Jakobsen74, T. Jakoubek138 , D.O. Jamin126, R. Jansky52, J. Janssen24 , M. Janus51, P.A. Janus81a, G. Jarlskog94, N. Javadov77,af , T. Jav˚urek35, M. Javurkova50 , F. Jeanneau142 , L. Jeanty18, J. Jejelava156a,ag, A. Jelinskas175 , P. Jenni50,d, J. Jeong44 , N. Jeong44, S. J´ez´equel5, H. Ji178 , J. Jia152, H. Jiang76, Y. Jiang58a, Z. Jiang150,r, S. Jiggins50 , F.A. Jimenez Morales37, J. Jimenez Pena171 , S. Jin15c, A. Jinaru27b , O. Jinnouchi162, H. Jivan32c , P. Johansson146, K.A. Johns7, C.A. Johnson63, W.J. Johnson145, K. Jon-And43a,43b , R.W.L. Jones87, S.D. Jones153, S. Jones7, T.J. Jones88, J. Jongmanns59a , P.M. Jorge137a,137b , J. Jovicevic165a , X. Ju18, J.J. Junggeburth113, A. Juste Rozas14,z, A. Kaczmarska82, M. Kado129 , H. Kagan123, M. Kagan150, T. Kaji176, E. Kajomovitz157, C.W. Kalderon94, A. Kaluza97 , S. Kama41, A. Kamenshchikov121, L. Kanjir89, Y. Kano160, V.A. Kantserov110 , J. Kanzaki79 , B. Kaplan122, L.S. Kaplan178, D. Kar32c , M.J. Kareem165b , E. Karentzos10, S.N. Karpov77 , Z.M. Karpova77, V. Kartvelishvili87, A.N. Karyukhin121 , L. Kashif178, R.D. Kass123 , A. Kastanas43a,43b, Y. Kataoka160, C. Kato58d,58c , J. Katzy44, K. Kawade80, K. Kawagoe85 , T. Kawamoto160, G. Kawamura51, E.F. Kay88, V.F. Kazanin120b,120a, R. Keeler173, R. Kehoe41 , J.S. Keller33, E. Kellermann94, J.J. Kempster21, J. Kendrick21, O. Kepka138, S. Kersten179 , B.P. Kerˇsevan89, S. Ketabchi Haghighat164 , R.A. Keyes101 , M. Khader170, F. Khalil-Zada13 , A. Khanov126, A.G. Kharlamov120b,120a, T. Kharlamova120b,120a, E.E. Khoda172, A. Khodinov163 , T.J. Khoo52, E. Khramov77, J. Khubua156b, S. Kido80, M. Kiehn52, C.R. Kilby91, Y.K. Kim36 , N. Kimura64a,64c, O.M. Kind19, B.T. King88, D. Kirchmeier46, J. Kirk141 , A.E. Kiryunin113 , T. Kishimoto160 , D. Kisielewska81a , V. Kitali44, O. Kivernyk5, E. Kladiva28b,* , T. Klapdor-Kleingrothaus50, M.H. Klein103, M. Klein88, U. Klein88, K. Kleinknecht97 , P. Klimek119, A. Klimentov29, T. Klingl24, T. Klioutchnikova35, F.F. Klitzner112, P. Kluit118 , S. Kluth113, E. Kneringer74, E.B.F.G. Knoops99, A. Knue50, A. Kobayashi160, D. Kobayashi85 , T. Kobayashi160, M. Kobel46, M. Kocian150, P. Kodys140, P.T. Koenig24, T. Koffas33 , E. Koffeman118, N.M. K¨ohler113, T. Koi150, M. Kolb59b, I. Koletsou5, T. Kondo79 , N. Kondrashova58c, K. K¨oneke50, A.C. K¨onig117, T. Kono79, R. Konoplich122,am , V. Konstantinides92, N. Konstantinidis92, B. Konya94, R. Kopeliansky63, S. Koperny81a , K. Korcyl82, K. Kordas159, G. Koren158 , A. Korn92, I. Korolkov14, E.V. Korolkova146 , N. Korotkova111, O. Kortner113 , S. Kortner113, T. Kosek140 , V.V. Kostyukhin24, A. Kotwal47 , A. Koulouris10, A. Kourkoumeli-Charalampidi68a,68b, C. Kourkoumelis9, E. Kourlitis146 , V. Kouskoura29, A.B. Kowalewska82, R. Kowalewski173, T.Z. Kowalski81a, C. Kozakai160 , W. Kozanecki142, A.S. Kozhin121 , V.A. Kramarenko111, G. Kramberger89, D. Krasnopevtsev58a , M.W. Krasny133, A. Krasznahorkay35, D. Krauss113, J.A. Kremer81a, J. Kretzschmar88 , P. Krieger164, K. Krizka18, K. Kroeninger45, H. Kroha113, J. Kroll138, J. Kroll134, J. Krstic16 , U. Kruchonak77, H. Kr¨uger24, N. Krumnack76, M.C. Kruse47, T. Kubota102 , S. Kuday4b , J.T. Kuechler179, S. Kuehn35, A. Kugel59a, F. Kuger174, T. Kuhl44, V. Kukhtin77, R. Kukla99 , Y. Kulchitsky105, S. Kuleshov144b, Y.P. Kulinich170, M. Kuna56, T. Kunigo83, A. Kupco138 , T. Kupfer45, O. Kuprash158, H. Kurashige80, L.L. Kurchaninov165a, Y.A. Kurochkin105 , A. Kurova110, M.G. Kurth15d, E.S. Kuwertz35, M. Kuze162, J. Kvita127, T. Kwan101 , A. La Rosa113, J.L. La Rosa Navarro78d, L. La Rotonda40b,40a, F. La Ruffa40b,40a, C. Lacasta171 , F. Lacava70a,70b , J. Lacey44, D.P.J. Lack98, H. Lacker19, D. Lacour133, E. Ladygin77, R. Lafaye5 , B. Laforge133 , T. Lagouri32c, S. Lai51, S. Lammers63, W. Lampl7, E. Lan¸con29, U. Landgraf50 , M.P.J. Landon90, M.C. Lanfermann52, V.S. Lang44, J.C. Lange51, R.J. Langenberg35 , A.J. Lankford168, F. Lanni29, K. Lantzsch24, A. Lanza68a , A. Lapertosa53b,53a , S. Laplace133 , J.F. Laporte142 , T. Lari66a, F. Lasagni Manghi23b,23a , M. Lassnig35, T.S. Lau61a , A. Laudrain129 , M. Lavorgna67a,67b, M. Lazzaroni66a,66b , B. Le102, O. Le Dortz133 , E. Le Guirriec99 , E.P. Le Quilleuc142, M. LeBlanc7, T. LeCompte6, F. Ledroit-Guillon56, C.A. Lee29, G.R. Lee144a , L. Lee57, S.C. Lee155, B. Lefebvre101 , M. Lefebvre173, F. Legger112, C. Leggett18, K. Lehmann149 , N. Lehmann179, G. Lehmann Miotto35, W.A. Leight44, A. Leisos159,w, M.A.L. Leite78d , R. Leitner140, D. Lellouch177, K.J.C. Leney92, T. Lenz24, B. Lenzi35, R. Leone7, S. Leone69a , C. Leonidopoulos48, G. Lerner153, C. Leroy107, R. Les164 , A.A.J. Lesage142, C.G. Lester31 , M. Levchenko135, J. Levˆeque5, D. Levin103 , L.J. Levinson177, D. Lewis90, B. Li15b, B. Li103 , C-Q. Li58a,al, H. Li58a , H. Li58b, L. Li58c, M. Li15a, Q. Li15d, Q.Y. Li58a, S. Li58d,58c, X. Li58c , Y. Li148, Z. Liang15a , B. Liberti71a, A. Liblong164, K. Lie61c , S. Liem118 , A. Limosani154 , C.Y. Lin31, K. Lin104, T.H. Lin97, R.A. Linck63, J.H. Lindon21, B.E. Lindquist152 , A.L. Lionti52 , E. Lipeles134, A. Lipniacka17, M. Lisovyi59b, T.M. Liss170,as, A. Lister172 , A.M. Litke143 , J.D. Little8, B. Liu76, B.L Liu6, H.B. Liu29, H. Liu103 , J.B. Liu58a, J.K.K. Liu132, K. Liu133 , M. Liu58a, P. Liu18, Y. Liu15a , Y.L. Liu58a, Y.W. Liu58a, M. Livan68a,68b, A. Lleres56 , J. Llorente Merino15a, S.L. Lloyd90, C.Y. Lo61b, F. Lo Sterzo41, E.M. Lobodzinska44, P. Loch7 , T. Lohse19, K. Lohwasser146, M. Lokajicek138, J.D. Long170, R.E. Long87, L. Longo65a,65b , K.A. Looper123 , J.A. Lopez144b, I. Lopez Paz98, A. Lopez Solis146, J. Lorenz112 , N. Lorenzo Martinez5, M. Losada22, P.J. L¨osel112 , A. L¨osle50, X. Lou44, X. Lou15a, A. Lounis129 , J. Love6, P.A. Love87, J.J. Lozano Bahilo171, H. Lu61a , M. Lu58a , Y.J. Lu62, H.J. Lubatti145 , C. Luci70a,70b, A. Lucotte56, C. Luedtke50, F. Luehring63, I. Luise133, L. Luminari70a , B. Lund-Jensen151, M.S. Lutz100, P.M. Luzi133, D. Lynn29, R. Lysak138, E. Lytken94, F. Lyu15a , V. Lyubushkin77, T. Lyubushkina77, H. Ma29, L.L. Ma58b , Y. Ma58b, G. Maccarrone49 , A. Macchiolo113, C.M. Macdonald146, J. Machado Miguens134,137b, D. Madaffari171, R. Madar37 , W.F. Mader46, A. Madsen44, N. Madysa46, J. Maeda80, K. Maekawa160, S. Maeland17 , T. Maeno29, M. Maerker46, A.S. Maevskiy111 , V. Magerl50, D.J. Mahon38, C. Maidantchik78b , T. Maier112 , A. Maio137a,137b,137d, O. Majersky28a, S. Majewski128, Y. Makida79, N. Makovec129 , B. Malaescu133, Pa. Malecki82, V.P. Maleev135, F. Malek56, U. Mallik75, D. Malon6, C. Malone31 , S. Maltezos10, S. Malyukov35, J. Mamuzic171, G. Mancini49, I. Mandi´c89, J. Maneira137a , L. Manhaes de Andrade Filho78a, J. Manjarres Ramos46, K.H. Mankinen94, A. Mann112 , A. Manousos74, B. Mansoulie142, J.D. Mansour15a, M. Mantoani51, S. Manzoni66a,66b , A. Marantis159, G. Marceca30, L. March52, L. Marchese132, G. Marchiori133 , M. Marcisovsky138 , C. Marcon94, C.A. Marin Tobon35, M. Marjanovic37, D.E. Marley103 , F. Marroquim78b , Z. Marshall18, M.U.F Martensson169, S. Marti-Garcia171, C.B. Martin123, T.A. Martin175 , V.J. Martin48, B. Martin dit Latour17, M. Martinez14,z, V.I. Martinez Outschoorn100 , S. Martin-Haugh141 , V.S. Martoiu27b , A.C. Martyniuk92, A. Marzin35, L. Masetti97 , T. Mashimo160, R. Mashinistov108 , J. Masik98, A.L. Maslennikov120b,120a, L.H. Mason102 , L. Massa71a,71b, P. Massarotti67a,67b, P. Mastrandrea5, A. Mastroberardino40b,40a , T. Masubuchi160, P. M¨attig179, J. Maurer27b, B. Maˇcek89, S.J. Maxfield88, D.A. Maximov120b,120a , R. Mazini155 , I. Maznas159, S.M. Mazza143, G. Mc Goldrick164, S.P. Mc Kee103 , A. McCarn103 , T.G. McCarthy113, L.I. McClymont92, W.P. McCormack18, E.F. McDonald102, J.A. Mcfayden35 , G. Mchedlidze51, M.A. McKay41, K.D. McLean173, S.J. McMahon141, P.C. McNamara102 , C.J. McNicol175, R.A. McPherson173,ad, J.E. Mdhluli32c , Z.A. Meadows100, S. Meehan145 , T.M. Megy50, S. Mehlhase112 , A. Mehta88, T. Meideck56, B. Meirose42, D. Melini171,h , B.R. Mellado Garcia32c , J.D. Mellenthin51, M. Melo28a , F. Meloni44, A. Melzer24, S.B. Menary98 , E.D. Mendes Gouveia137a, L. Meng88, X.T. Meng103, A. Mengarelli23b,23a , S. Menke113 , E. Meoni40b,40a, S. Mergelmeyer19, S.A.M. Merkt136, C. Merlassino20, P. Mermod52 , L. Merola67a,67b, C. Meroni66a, F.S. Merritt36, A. Messina70a,70b , J. Metcalfe6, A.S. Mete168 , C. Meyer134 , J. Meyer157, J-P. Meyer142, H. Meyer Zu Theenhausen59a , F. Miano153 , R.P. Middleton141 , L. Mijovi´c48, G. Mikenberg177 , M. Mikestikova138, M. Mikuˇz89, M. Milesi102 , A. Milic164, D.A. Millar90, D.W. Miller36, A. Milov177 , D.A. Milstead43a,43b, A.A. Minaenko121 , M. Mi˜nano Moya171, I.A. Minashvili156b, A.I. Mincer122, B. Mindur81a, M. Mineev77 , Y. Minegishi160 , Y. Ming178 , L.M. Mir14, A. Mirto65a,65b, K.P. Mistry134, T. Mitani176 , J. Mitrevski112 , V.A. Mitsou171, M. Mittal58c , A. Miucci20, P.S. Miyagawa146 , A. Mizukami79 , J.U. Mj¨ornmark94, T. Mkrtchyan181, M. Mlynarikova140, T. Moa43a,43b , K. Mochizuki107 , P. Mogg50, S. Mohapatra38, S. Molander43a,43b, R. Moles-Valls24, M.C. Mondragon104 , K. M¨onig44, J. Monk39, E. Monnier99, A. Montalbano149, J. Montejo Berlingen35, F. Monticelli86 , S. Monzani66a, N. Morange129, D. Moreno22, M. Moreno Ll´acer35, P. Morettini53b , M. Morgenstern118, S. Morgenstern46, D. Mori149 , M. Morii57, M. Morinaga176 , V. Morisbak131 , A.K. Morley35, G. Mornacchi35, A.P. Morris92, J.D. Morris90, L. Morvaj152, P. Moschovakos10 , M. Mosidze156b, H.J. Moss146, J. Moss150,o, K. Motohashi162 , R. Mount150 , E. Mountricha35 , E.J.W. Moyse100, S. Muanza99, F. Mueller113, J. Mueller136, R.S.P. Mueller112 , D. Muenstermann87, G.A. Mullier94, F.J. Munoz Sanchez98, P. Murin28b, W.J. Murray175,141 , A. Murrone66a,66b, M. Muˇskinja89, C. Mwewa32a, A.G. Myagkov121,an, J. Myers128, M. Myska139 , B.P. Nachman18, O. Nackenhorst45, K. Nagai132, K. Nagano79, Y. Nagasaka60, M. Nagel50 , E. Nagy99, A.M. Nairz35, Y. Nakahama115 , K. Nakamura79, T. Nakamura160, I. Nakano124 , H. Nanjo130 , F. Napolitano59a, R.F. Naranjo Garcia44, R. Narayan11, D.I. Narrias Villar59a , I. Naryshkin135 , T. Naumann44, G. Navarro22, R. Nayyar7, H.A. Neal103,*, P.Y. Nechaeva108 , T.J. Neep142 , A. Negri68a,68b , M. Negrini23b , S. Nektarijevic117, C. Nellist51, M.E. Nelson132 , S. Nemecek138 , P. Nemethy122, M. Nessi35,f, M.S. Neubauer170 , M. Neumann179, P.R. Newman21 , T.Y. Ng61c, Y.S. Ng19, H.D.N. Nguyen99, T. Nguyen Manh107, E. Nibigira37, R.B. Nickerson132 , R. Nicolaidou142, D.S. Nielsen39, J. Nielsen143, N. Nikiforou11, V. Nikolaenko121,an , I. Nikolic-Audit133 , K. Nikolopoulos21, P. Nilsson29, Y. Ninomiya79, A. Nisati70a , N. Nishu58c , R. Nisius113, I. Nitsche45, T. Nitta176, T. Nobe160, Y. Noguchi83, M. Nomachi130, I. Nomidis133 , M.A. Nomura29, T. Nooney90, M. Nordberg35, N. Norjoharuddeen132, T. Novak89 , O. Novgorodova46, R. Novotny139, L. Nozka127, K. Ntekas168, E. Nurse92, F. Nuti102 , F.G. Oakham33,av, H. Oberlack113, J. Ocariz133, A. Ochi80, I. Ochoa38, J.P. Ochoa-Ricoux144a , K. O’Connor26, S. Oda85, S. Odaka79, S. Oerdek51, A. Oh98, S.H. Oh47, C.C. Ohm151 , H. Oide53b,53a, M.L. Ojeda164 , H. Okawa166, Y. Okazaki83, Y. Okumura160, T. Okuyama79 , A. Olariu27b, L.F. Oleiro Seabra137a, S.A. Olivares Pino144a, D. Oliveira Damazio29, J.L. Oliver1 , M.J.R. Olsson36, A. Olszewski82, J. Olszowska82, D.C. O’Neil149, A. Onofre137a,137e , K. Onogi115 , P.U.E. Onyisi11, H. Oppen131, M.J. Oreglia36, G.E. Orellana86, Y. Oren158, D. Orestano72a,72b , N. Orlando61b, A.A. O’Rourke44, R.S. Orr164, B. Osculati53b,53a,*, V. O’Shea55, R. Ospanov58a , G. Otero y Garzon30, H. Otono85, M. Ouchrif34d, F. Ould-Saada131, A. Ouraou142, Q. Ouyang15a , M. Owen55, R.E. Owen21, V.E. Ozcan12c, N. Ozturk8, J. Pacalt127, H.A. Pacey31, K. Pachal149 , A. Pacheco Pages14, L. Pacheco Rodriguez142, C. Padilla Aranda14, S. Pagan Griso18 , M. Paganini180, G. Palacino63, S. Palazzo48, S. Palestini35, M. Palka81b, D. Pallin37 , I. Panagoulias10, C.E. Pandini35, J.G. Panduro Vazquez91, P. Pani35, G. Panizzo64a,64c , L. Paolozzi52, T.D. Papadopoulou10, K. Papageorgiou9,k, A. Paramonov6 , D. Paredes Hernandez61b , S.R. Paredes Saenz132, B. Parida163 , T.H. Park33, A.J. Parker87 , K.A. Parker44, M.A. Parker31, F. Parodi53b,53a, J.A. Parsons38, U. Parzefall50, V.R. Pascuzzi164 , J.M.P. Pasner143, E. Pasqualucci70a, S. Passaggio53b, F. Pastore91, P. Pasuwan43a,43b , S. Pataraia97, J.R. Pater98, A. Pathak178,l, T. Pauly35, B. Pearson113 , M. Pedersen131 , L. Pedraza Diaz117, R. Pedro137a,137b, S.V. Peleganchuk120b,120a, O. Penc138, C. Peng15d , H. Peng58a , B.S. Peralva78a, M.M. Perego129, A.P. Pereira Peixoto137a , D.V.Perepelitsa29 , F. Peri19, L. Perini66a,66b , H. Pernegger35, S. Perrella67a,67b, V.D. Peshekhonov77,*, K. Peters44 , R.F.Y. Peters98, B.A. Petersen35, T.C. Petersen39, E. Petit56, A. Petridis1, C. Petridou159 , P. Petroff129, M. Petrov132, F. Petrucci72a,72b , M. Pettee180, N.E. Pettersson100, A. Peyaud142 , R. Pezoa144b, T. Pham102 , F.H. Phillips104, P.W. Phillips141, M.W. Phipps170, G. Piacquadio152 , E. Pianori18, A. Picazio100, M.A. Pickering132, R.H. Pickles98, R. Piegaia30, J.E. Pilcher36 , A.D. Pilkington98, M. Pinamonti71a,71b, J.L. Pinfold3, M. Pitt177, L. Pizzimento71a,71b , M.-A. Pleier29, V. Pleskot140, E. Plotnikova77, D. Pluth76, P. Podberezko120b,120a, R. Poettgen94 , R. Poggi52, L. Poggioli129 , I. Pogrebnyak104, D. Pohl24, I. Pokharel51, G. Polesello68a , A. Poley18 , A. Policicchio70a,70b, R. Polifka35, A. Polini23b, C.S. Pollard44, V. Polychronakos29 , D. Ponomarenko110 , L. Pontecorvo35, G.A.Popeneciu27d, D.M. Portillo Quintero133 , S. Pospisil139, K. Potamianos44, I.N. Potrap77, C.J. Potter31, H. Potti11, T. Poulsen94 , J. Poveda35, T.D. Powell146, M.E. Pozo Astigarraga35, P. Pralavorio99, S. Prell76, D. Price98 , M. Primavera65a , S. Prince101 , N. Proklova110, K. Prokofiev61c, F. Prokoshin144b , S. Protopopescu29, J. Proudfoot6, M. Przybycien81a , A. Puri170, P. Puzo129, J. Qian103, Y. Qin98 , A. Quadt51, M. Queitsch-Maitland44, A. Qureshi1, P. Rados102, F. Ragusa66a,66b, G. Rahal95 , J.A. Raine52, S. Rajagopalan29, A. Ramirez Morales90, T. Rashid129, S. Raspopov5 , M.G. Ratti66a,66b, D.M. Rauch44, F. Rauscher112, S. Rave97, B. Ravina146 , I. Ravinovich177 , J.H. Rawling98, M. Raymond35, A.L. Read131, N.P. Readioff56, M. Reale65a,65b , D.M. Rebuzzi68a,68b, A. Redelbach174 , G. Redlinger29, R. Reece143 , R.G. Reed32c, K. Reeves42 , L. Rehnisch19, J. Reichert134, D. Reikher158, A. Reiss97, C. Rembser35, H. Ren15d , M. Rescigno70a , S. Resconi66a, E.D. Resseguie134, S. Rettie172, E. Reynolds21 , O.L. Rezanova120b,120a, P. Reznicek140 , E. Ricci73a,73b , R. Richter113, S. Richter44 , E. Richter-Was81b, O. Ricken24, M. Ridel133, P. Rieck113, C.J. Riegel179, O. Rifki44 , 87 M. Rijssenbeek152 , A. Rimoldi68a,68b, M. Rimoldi20, L. Rinaldi23b, G. Ripellino151, B. Risti´c, E. Ritsch35, I. Riu14, J.C. Rivera Vergara144a, F. Rizatdinova126, E. Rizvi90, C. Rizzi14 , R.T. Roberts98, S.H. Robertson101,ad, D. Robinson31, J.E.M. Robinson44, A. Robson55 , E. Rocco97, C. Roda69a,69b, Y. Rodina99, S. Rodriguez Bosca171, A. Rodriguez Perez14 , D. Rodriguez Rodriguez171, A.M. Rodr´ıguez Vera165b, S. Roe35, C.S. Rogan57, O. Røhne131 , R. R¨ohrig113 , C.P.A. Roland63, J. Roloff57, A. Romaniouk110, M. Romano23b,23a , N. Rompotis88 , M. Ronzani122, L. Roos133, S. Rosati70a, K. Rosbach50, N-A. Rosien51, B.J. Rosser134, E. Rossi44 , E. Rossi72a,72b, E. Rossi67a,67b, L.P. Rossi53b, L. Rossini66a,66b, J.H.N. Rosten31, R. Rosten14 , M. Rotaru27b, J. Rothberg145, D. Rousseau129, D. Roy32c, A. Rozanov99, Y. Rozen157 , X. Ruan32c, F. Rubbo150 , F. R¨uhr50, A. Ruiz-Martinez171, Z. Rurikova50, N.A. Rusakovich77 , H.L. Russell101 , J.P. Rutherfoord7, E.M. R¨uttinger44,m, Y.F. Ryabov135 , M. Rybar170 , G. Rybkin129, S. Ryu6, A. Ryzhov121, G.F. Rzehorz51, P. Sabatini51, G. Sabato118 , S. Sacerdoti129 , H.F-W. Sadrozinski143 , R. Sadykov77, F. Safai Tehrani70a, P. Saha119 , M. Sahinsoy59a, A. Sahu179, M. Saimpert44, M. Saito160 , T. Saito160, H. Sakamoto160 , A. Sakharov122,am, D. Salamani52, G. Salamanna72a,72b, J.E. Salazar Loyola144b , P.H. Sales De Bruin169, D. Salihagic113,*, A. Salnikov150 , J. Salt171, D. Salvatore40b,40a , F. Salvatore153, A. Salvucci61a,61b,61c, A. Salzburger35, J. Samarati35, D. Sammel50 , D. Sampsonidis159, D. Sampsonidou159, J. S´anchez171 , A. Sanchez Pineda64a,64c, H. Sandaker131 , C.O. Sander44, M. Sandhoff179, C. Sandoval22, D.P.C. Sankey141, M. Sannino53b,53a, Y. Sano115 , A. Sansoni49, C. Santoni37, H. Santos137a, I. Santoyo Castillo153, A. Santra171, A. Sapronov77 , J.G. Saraiva137a,137d , O. Sasaki79, K. Sato166, E. Sauvan5, P. Savard164,av, N. Savic113 , R. Sawada160, C. Sawyer141, L. Sawyer93,ak, C. Sbarra23b, A. Sbrizzi23a, T. Scanlon92 , J. Schaarschmidt145, P. Schacht113, B.M. Schachtner112, D. Schaefer36, L. Schaefer134 , J. Schaeffer97, S. Schaepe35, U. Sch¨afer97, A.C. Schaffer129, D. Schaile112, R.D. Schamberger152 , N. Scharmberg98, V.A. Schegelsky135, D. Scheirich140, F. Schenck19, M. Schernau168 , C. Schiavi53b,53a, S. Schier143 , L.K. Schildgen24, Z.M. Schillaci26, E.J. Schioppa35 , M. Schioppa40b,40a, K.E. Schleicher50, S. Schlenker35, K.R. Schmidt-Sommerfeld113 , K. Schmieden35, C. Schmitt97, S. Schmitt44, S. Schmitz97, J.C. Schmoeckel44, U. Schnoor50 , L. Schoeffel142, A. Schoening59b , E. Schopf132, M. Schott97, J.F.P. Schouwenberg117 , J. Schovancova35, S. Schramm52, A. Schulte97, H-C. Schultz-Coulon59a, M. Schumacher50 , B.A. Schumm143, Ph. Schune142, A. Schwartzman150, T.A. Schwarz103 , Ph. Schwemling142 , R. Schwienhorst104 , A. Sciandra24, G. Sciolla26, M. Scornajenghi40b,40a , F. Scuri69a, F. Scutti102 , L.M. Scyboz113, C.D. Sebastiani70a,70b, P. Seema19, S.C. Seidel116, A. Seiden143, T. Seiss36 , J.M. Seixas78b, G. Sekhniaidze67a, K. Sekhon103, S.J. Sekula41, N. Semprini-Cesari23b,23a , S. Sen47, S. Senkin37, C. Serfon131, L. Serin129, L. Serkin64a,64b, M. Sessa58a, H. Severini125 , F. Sforza167, A. Sfyrla52, E. Shabalina51, J.D. Shahinian143 , N.W. Shaikh43a,43b, L.Y. Shan15a , R. Shang170, J.T. Shank25, M. Shapiro18, A.S. Sharma1, A. Sharma132 , P.B. Shatalov109 , K. Shaw153 , S.M. Shaw98, A. Shcherbakova135, Y. Shen125, N. Sherafati33, A.D. Sherman25 , P. Sherwood92, L. Shi155,ar, S. Shimizu79, C.O. Shimmin180, Y. Shimogama176, M. Shimojima114 , I.P.J. Shipsey132, S. Shirabe85, M. Shiyakova77, J. Shlomi177, A. Shmeleva108 , D. Shoaleh Saadi107, M.J. Shochet36, S. Shojaii102, D.R. Shope125, S. Shrestha123, E. Shulga110 , P. Sicho138 , A.M. Sickles170, P.E. Sidebo151, E. Sideras Haddad32c , O. Sidiropoulou35 , A. Sidoti23b,23a , F. Siegert46, Dj. Sijacki16, J. Silva137a , M. Silva Jr.178 , M.V. Silva Oliveira78a , S.B. Silverstein43a, S. Simion129, E. Simioni97, M. Simon97, R. Simoniello97, P. Sinervo164 , N.B. Sinev128, M. Sioli23b,23a, G. Siragusa174, I. Siral103 , S.Yu. Sivoklokov111, J. Sj¨olin43a,43b , P. Skubic125, M. Slater21, T. Slavicek139, M. Slawinska82, K. Sliwa167, R. Slovak140 , V. Smakhtin177, B.H. Smart5, J. Smiesko28a, N. Smirnov110, S.Yu. Smirnov110 , Y. Smirnov110 , L.N. Smirnova111, O. Smirnova94, J.W. Smith51, M. Smizanska87, K. Smolek139, A. Smykiewicz82 , A.A. Snesarev108, I.M. Snyder128, S. Snyder29, R. Sobie173,ad, A.M. Soffa168 , A. Soffer158 , A. Søgaard48, D.A. Soh155, G. Sokhrannyi89, C.A. Solans Sanchez35, M. Solar139 , E.Yu. Soldatov110, U. Soldevila171 , A.A. Solodkov121, A. Soloshenko77, O.V. Solovyanov121 , V. Solovyev135, P. Sommer146, H. Son167 , W. Song141, W.Y. Song165b , A. Sopczak139 , F. Sopkova28b , C.L. Sotiropoulou69a,69b, S. Sottocornola68a,68b , R. Soualah64a,64c,j, A.M. Soukharev120b,120a, D. South44, B.C. Sowden91, S. Spagnolo65a,65b, M. Spalla113 , M. Spangenberg175, F. Span`o91, D. Sperlich19, T.M. Spieker59a, R. Spighi23b, G. Spigo35 , L.A. Spiller102 , D.P. Spiteri55, M. Spousta140, A. Stabile66a,66b, R. Stamen59a, S. Stamm19 , E. Stanecka82, R.W. Stanek6, C. Stanescu72a, B. Stanislaus132, M.M. Stanitzki44, B. Stapf118 , S. Stapnes131 , E.A. Starchenko121 , G.H. Stark36, J. Stark56, S.H Stark39, P. Staroba138 , P. Starovoitov59a, S. St¨arz35, R. Staszewski82, M. Stegler44, P. Steinberg29, B. Stelzer149 , H.J. Stelzer35, O. Stelzer-Chilton165a, H. Stenzel54, T.J. Stevenson153, G.A. Stewart35 , M.C. Stockton35, G. Stoicea27b, P. Stolte51, S. Stonjek113, A. Straessner46, J. Strandberg151 , S. Strandberg43a,43b, M. Strauss125, P. Strizenec28b, R. Str¨ohmer174, D.M. Strom128 , R. Stroynowski41, A. Strubig48, S.A. Stucci29, B. Stugu17, J. Stupak125, N.A. Styles44, D. Su150 , J. Su136 , S. Suchek59a, Y. Sugaya130, M. Suk139, V.V. Sulin108, M.J. Sullivan88, D.M.S. Sultan52 , S. Sultansoy4c, T. Sumida83, S. Sun103, X. Sun3, K. Suruliz153, C.J.E. Suster154, M.R. Sutton153 , S. Suzuki79, M. Svatos138, M. Swiatlowski36, S.P. Swift2, A. Sydorenko97, I. Sykora28a , T. Sykora140 , D. Ta97, K. Tackmann44,aa, J. Taenzer158, A. Taffard168, R. Tafirout165a , E. Tahirovic90, N. Taiblum158 , H. Takai29, R. Takashima84, E.H. Takasugi113, K. Takeda80 , T. Takeshita147, Y. Takubo79, M. Talby99, A.A. Talyshev120b,120a, J. Tanaka160, M. Tanaka162 , R. Tanaka129 , B.B. Tannenwald123, S. Tapia Araya144b, S. Tapprogge97 , A.Tarek Abouelfadl Mohamed133, S. Tarem157, G. Tarna27b,e, G.F. Tartarelli66a, P. Tas140 , M. Tasevsky138, T. Tashiro83, E. Tassi40b,40a , A. Tavares Delgado137a,137b, Y. Tayalati34e , A.C. Taylor116, A.J. Taylor48, G.N. Taylor102 , P.T.E. Taylor102, W. Taylor165b, A.S. Tee87 , P. Teixeira-Dias91, H. Ten Kate35, J.J. Teoh118, S. Terada79, K. Terashi160, J. Terron96 , S. Terzo14, M. Testa49, R.J. Teuscher164,ad, S.J. Thais180, T. Theveneaux-Pelzer44, F. Thiele39 , D.W. Thomas91, J.P. Thomas21, A.S. Thompson55, P.D. Thompson21, L.A. Thomsen180 , E. Thomson134, Y. Tian38, R.E. Ticse Torres51, V.O. Tikhomirov108,ao, Yu.A. Tikhonov120b,120a , S. Timoshenko110, P. Tipton180, S. Tisserant99, K. Todome162, S.Todorova-Nova5, S. Todt46 , J. Tojo85, S. Tok´ar28a , K. Tokushuku79, E. Tolley123, K.G. Tomiwa32c, M. Tomoto115 , L. Tompkins150,r, K. Toms116, B. Tong57, P. Tornambe50, E. Torrence128 , H. Torres46 , E. Torr´o Pastor145 , C. Tosciri132, J. Toth99,ac, F. Touchard99, D.R. Tovey146 , C.J. Treado122 , T. Trefzger174, F. Tresoldi153, A. Tricoli29, I.M. Trigger165a, S. Trincaz-Duvoid133 , M.F. Tripiana14, W. Trischuk164, B. Trocm´e56, A. Trofymov129, C. Troncon66a, M. Trovatelli173 , F. Trovato153, L. Truong32b, M. Trzebinski82, A. Trzupek82, F. Tsai44, J.C-L. Tseng132 , P.V. Tsiareshka105, A. Tsirigotis159, N. Tsirintanis9, V. Tsiskaridze152, E.G. Tskhadadze156a , I.I. Tsukerman109, V. Tsulaia18, S. Tsuno79, D. Tsybychev152,163 , Y. Tu61b , A. Tudorache27b , V. Tudorache27b, T.T. Tulbure27a , A.N. Tuna57, S. Turchikhin77, D. Turgeman177 , I. Turk Cakir4b,u, R.T. Turra66a, P.M. Tuts38, E. Tzovara97, G. Ucchielli23b,23a, I. Ueda79 , M. Ughetto43a,43b, F. Ukegawa166, G. Unal35, A. Undrus29, G. Unel168, F.C. Ungaro102 , Y. Unno79, K. Uno160, J. Urban28b, P. Urquijo102, P. Urrejola97, G. Usai8, J. Usui79 , L. Vacavant99, V. Vacek139, B. Vachon101, K.O.H. Vadla131, A. Vaidya92, C. Valderanis112 , 44 E. Valdes Santurio43a,43b, M. Valente52, S. Valentinetti23b,23a, A. Valero171, L. Val´ery, R.A. Vallance21, A. Vallier5, J.A. Valls Ferrer171, T.R. Van Daalen14, H. Van der Graaf118 , P. Van Gemmeren6, J. Van Nieuwkoop149, I. Van Vulpen118, M. Vanadia71a,71b, W. Vandelli35 , A. Vaniachine163, P. Vankov118, R. Vari70a, E.W. Varnes7, C. Varni53b,53a, T. Varol41 , D. Varouchas129, K.E. Varvell154, G.A. Vasquez144b, J.G. Vasquez180 , F. Vazeille37 , D. Vazquez Furelos14, T.Vazquez Schroeder35, J. Veatch51, V. Vecchio72a,72b, L.M. Veloce164 , F. Veloso137a,137c , S. Veneziano70a, A. Ventura65a,65b, M. Venturi173, N. Venturi35, V. Vercesi68a , M. Verducci72a,72b, C.M. Vergel Infante76, C. Vergis24, W. Verkerke118, A.T. Vermeulen118 , J.C. Vermeulen118, M.C. Vetterli149,av, N. Viaux Maira144b , M. Vicente Barreto Pinto52 , I. Vichou170,*, T. Vickey146, O.E. Vickey Boeriu146, G.H.A. Viehhauser132 , S. Viel18, L. Vigani132 , M. Villa23b,23a, M. Villaplana Perez66a,66b, E. Vilucchi49, M.G. Vincter33, V.B. Vinogradov77 , A. Vishwakarma44, C. Vittori23b,23a, I. Vivarelli153, S. Vlachos10, M. Vogel179, P. Vokac139 , G. Volpi14, S.E. von Buddenbrock32c, E.VonToerne24, V. Vorobel140, K. Vorobev110 , M. Vos171 , J.H. Vossebeld88, N. Vranjes16, M. Vranjes Milosavljevic16, V. Vrba139, M. Vreeswijk118 , T. ˇZeniˇ28a , L. ˇc16, P. Wagner24, W. Wagner179 Sfiligoj89, R. Vuillermet35, I. Vukotic36, T. ˇsZivkovi´, J. Wagner-Kuhr112, H. Wahlberg86, S. Wahrmund46, K. Wakamiya80, V.M. Walbrecht113 , J. Walder87, R. Walker112 , S.D. Walker91, W. Walkowiak148, V. Wallangen43a,43b, A.M. Wang57 , C. Wang58b,e, F. Wang178 , H. Wang18, H. Wang3, J. Wang154, J. Wang59b , P. Wang41 , Q. Wang125, R.-J. Wang133, R. Wang58a, R. Wang6, S.M. Wang155, W.T. Wang58a , W. Wang15c,ae, W.X. Wang58a,ae, Y. Wang58a,al, Z. Wang58c, C. Wanotayaroj44, A. Warburton101 , C.P. Ward31, D.R. Wardrope92, A. Washbrook48, P.M. Watkins21, A.T. Watson21 , M.F. Watson21, G. Watts145, S. Watts98, B.M. Waugh92, A.F. Webb11, S. Webb97, C. Weber180 , M.S. Weber20, S.A. Weber33, S.M. Weber59a, A.R. Weidberg132, B. Weinert63, J. Weingarten45 , M. Weirich97, C. Weiser50, P.S. Wells35, T. Wenaus29, T. Wengler35, S. Wenig35, N. Wermes24 , M.D. Werner76, P. Werner35, M. Wessels59a, T.D. Weston20, K. Whalen128 , N.L. Whallon145 , A.M. Wharton87, A.S. White103, A. White8, M.J. White1, R. White144b, D. Whiteson168 , B.W. Whitmore87, F.J. Wickens141, W. Wiedenmann178, M. Wielers141, C. Wiglesworth39 , L.A.M. Wiik-Fuchs50, F. Wilk98, H.G. Wilkens35, L.J. Wilkins91, H.H. Williams134, S. Williams31 , C. Willis104, S. Willocq100, J.A. Wilson21, I. Wingerter-Seez5, E. Winkels153, F. Winklmeier128 , O.J. Winston153, B.T. Winter50, M. Wittgen150, M. Wobisch93, A. Wolf97, T.M.H. Wolf118 , R. Wolff99, M.W. Wolter82, H. Wolters137a,137c, V.W.S. Wong172 , N.L. Woods143 , S.D. Worm21 , B.K. Wosiek82, K.W. Wo´zniak82, K. Wraight55, M. Wu36, S.L. Wu178, X. Wu52, Y. Wu58a , T.R. Wyatt98, B.M. Wynne48, S. Xella39, Z. Xi103, L. Xia175, D. Xu15a, H. Xu58a,e, L. Xu29 , T. Xu142, W. Xu103 , B. Yabsley154, S. Yacoob32a, K. Yajima130, D.P. Yallup92, D. Yamaguchi162 , Y. Yamaguchi162, A. Yamamoto79, T. Yamanaka160, F. Yamane80, M. Yamatani160 , T. Yamazaki160, Y. Yamazaki80, Z. Yan25, H.J. Yang58c,58d, H.T. Yang18, S. Yang75, Y. Yang160 , Z. Yang17, W-M. Yao18, Y.C. Yap44, Y. Yasu79, E. Yatsenko58c,58d, J. Ye41, S. Ye29 , I. Yeletskikh77, E. Yigitbasi25, E. Yildirim97, K. Yorita176, K. Yoshihara134, C.J.S. Young35 , C. Young150, J. Yu8, J. Yu76, X. Yue59a , S.P.Y. Yuen24, B. Zabinski82, G. Zacharis10 , E. Zaffaroni52, R. Zaidan14, A.M. Zaitsev121,an, T. Zakareishvili156b, N. Zakharchuk33 , J. Zalieckas17, S. Zambito57, D. Zanzi35, D.R. Zaripovas55, S.V. Zeißner45, C. Zeitnitz179 , 132 G. Zemaityte132, J.C. Zeng170, Q. Zeng150, O. Zenin121, D. Zerwas129 , M. Zgubiˇc, D.F. Zhang58b, D. Zhang103, F. Zhang178, G. Zhang58a, G. Zhang15b, H. Zhang15c , J. Zhang6 , L. Zhang15c, L. Zhang58a, M. Zhang170, P. Zhang15c , R. Zhang58a , R. Zhang24, X. Zhang58b , Y. Zhang15d, Z. Zhang129, P. Zhao47, Y. Zhao58b,129,aj, Z. Zhao58a , A. Zhemchugov77 , Z. Zheng103, D. Zhong170, B. Zhou103, C. Zhou178 , L. Zhou41, M.S. Zhou15d, M. Zhou152 , N. Zhou58c, Y. Zhou7, C.G. Zhu58b , H.L. Zhu58a, H. Zhu15a, J. Zhu103 , Y. Zhu58a, X. Zhuang15a , K. Zhukov108, V. Zhulanov120b,120a, A. Zibell174, D. Zieminska63, N.I. Zimine77 , S. Zimmermann50, Z. Zinonos113, M. Zinser97, M. Ziolkowski148, G. Zobernig178 , A. Zoccoli23b,23a , K. Zoch51, T.G. Zorbas146 , R. Zou36, M. Zur Nedden19, L. Zwalinski35 1 Department of Physics, University of Adelaide, Adelaide; Australia 2 Physics Department, SUNY Albany, Albany NY; United States of America 3 Department of Physics, University of Alberta, Edmonton AB; Canada 4 Department of Physics(a), Ankara University, Ankara; Istanbul Aydin University(b), Istanbul; Division of Physics(c), TOBB University of Economics and Technology, Ankara; Turkey 5 LAPP, Universit´e Grenoble Alpes, Universit´e Savoie Mont Blanc, CNRS/IN2P3, Annecy; France 6 High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America 7 Department of Physics, University of Arizona, Tucson AZ; United States of America 8 Department of Physics, University of Texas at Arlington, Arlington TX; United States of America 9 Physics Department, National and Kapodistrian University of Athens, Athens; Greece 10 Physics Department, National Technical University of Athens, Zografou; Greece 11 Department of Physics, University of Texas at Austin, Austin TX; United States of America 12 Bahcesehir University(a), Faculty of Engineering and Natural Sciences, Istanbul; Istanbul Bilgi University(b), Faculty of Engineering and Natural Sciences, Istanbul; Department of Physics(c), Bogazici University, Istanbul; Department of Physics Engineering(d), Gaziantep University, Gaziantep; Turkey 13 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan 14 Institut de F´ısica d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain 15 Institute of High Energy Physics(a), Chinese Academy of Sciences, Beijing; Physics Department(b) , Tsinghua University, Beijing; Department of Physics(c), Nanjing University, Nanjing; University of Chinese Academy of Science (UCAS)(d), Beijing; China 16 Institute of Physics, University of Belgrade, Belgrade; Serbia 17 Department for Physics and Technology, University of Bergen, Bergen; Norway 18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America 19 Institut f¨ur Physik, Humboldt Universit¨at zu Berlin, Berlin; Germany 20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland 21 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom 22 Centro de Investigaci´ones, Universidad Antonio Nari˜no, Bogota; Colombia 23 Dipartimento di Fisica e Astronomia(a), Universit`a di Bologna, Bologna; INFN Sezione di Bologna(b); Italy 24 Physikalisches Institut, Universit¨at Bonn, Bonn; Germany 25 Department of Physics, Boston University, Boston MA; United States of America 26 Department of Physics, Brandeis University, Waltham MA; United States of America 27 Transilvania University of Brasov(a), Brasov; Horia Hulubei National Institute of Physics and Nuclear Engineering(b), Bucharest; Department of Physics(c), Alexandru Ioan Cuza University of Iasi, Iasi; National Institute for Research and Development of Isotopic and Molecular Technologies(d), Physics Department, Cluj-Napoca; University Politehnica Bucharest(e), Bucharest; West University in Timisoara(f), Timisoara; Romania 28 Faculty of Mathematics(a), Physics and Informatics, Comenius University, Bratislava; Department of Subnuclear Physics(b), Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic 29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America 30 Departamento de F´ısica, Universidad de Buenos Aires, Buenos Aires; Argentina 31 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom 32 Department of Physics(a), University of Cape Town, Cape Town; Department of Mechanical Engineering Science(b), University of Johannesburg, Johannesburg; School of Physics(c), University of the Witwatersrand, Johannesburg; South Africa 33 Department of Physics, Carleton University, Ottawa ON; Canada 34 Facult´e des Sciences Ain Chock(a), R´eseau Universitaire de Physique des Hautes Energies — Universit´e Hassan II, Casablanca; Centre National de l’Energie des Sciences Techniques Nucleaires (CNESTEN)(b), Rabat; Facult´e des Sciences Semlalia(c), Universit´e Cadi Ayyad, LPHEA-Marrakech; Facult´e des Sciences(d), Universit´e Mohamed Premier and LPTPM, Oujda; Facult´e des sciences(e), Universit´e Mohammed V, Rabat; Morocco 35 CERN, Geneva; Switzerland 36 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America 37 LPC, Universit´e Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France 38 Nevis Laboratory, Columbia University, Irvington NY; United States of America 39 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark 40 Dipartimento di Fisica(a), Universit`a della Calabria, Rende; INFN Gruppo Collegato di Cosenza(b), Laboratori Nazionali di Frascati; Italy 41 Physics Department, Southern Methodist University, Dallas TX; United States ofAmerica 42 Physics Department, University ofTexas at Dallas,Richardson TX; United States ofAmerica 43 Department of Physics(a), Stockholm University; Oskar Klein Centre(b), Stockholm; Sweden 44 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany 45 Lehrstuhl f¨ur Experimentelle Physik IV, Technische Universit¨at Dortmund, Dortmund; Germany 46 Institut f¨ur Kern-und Teilchenphysik, Technische Universit¨at Dresden, Dresden; Germany 47 Department of Physics, Duke University, Durham NC; United States of America 48 SUPA — School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom 49 INFN e Laboratori Nazionali di Frascati, Frascati; Italy 50 Physikalisches Institut, Albert-Ludwigs-Universit¨at Freiburg, Freiburg; Germany 51 II. Physikalisches Institut, Georg-August-Universit¨at G¨ottingen, G¨ottingen; Germany 52 D´epartement de Physique Nucl´eaire et Corpusculaire, Universit´e de Gen`eve, Gen`eve; Switzerland 53 Dipartimento di Fisica(a), Universit`a di Genova, Genova; INFN Sezione di Genova(b); Italy 54 II. Physikalisches Institut, Justus-Liebig-Universit¨at Giessen, Giessen; Germany 55 SUPA — School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom 56 LPSC, Universit´e Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France 57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America 58 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics(a) , University of Science and Technology of China, Hefei; Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE)(b), Shandong University, Qingdao; School of Physics and Astronomy(c), Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; Tsung-Dao Lee Institute(d), Shanghai; China 59 Kirchhoff-Institutf¨ur Physik(a), Ruprecht-Karls-Universit¨at Heidelberg, Heidelberg; Physikalisches Institut(b), Ruprecht-Karls-Universit¨at Heidelberg, Heidelberg; Germany 60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan 61 Department of Physics(a), Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Department of Physics(b), University of Hong Kong, Hong Kong; Department of Physics and Institute for Advanced Study(c), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China 62 Department of Physics, National Tsing Hua University, Hsinchu; Taiwan 63 Department of Physics, Indiana University, Bloomington IN; United States of America 64 INFN Gruppo Collegato di Udine(a), Sezione di Trieste, Udine; ICTP(b), Trieste; Dipartimento Politecnico di Ingegneria e Architettura(c), Universit`a di Udine, Udine; Italy 65 INFN Sezione di Lecce(a); Dipartimento di Matematica e Fisica(b), Universit`a del Salento, Lecce; Italy 66 INFN Sezione di Milano(a); Dipartimento di Fisica(b), Universit`a di Milano, Milano; Italy 67 INFN Sezione di Napoli(a); Dipartimento di Fisica(b), Universit`a di Napoli, Napoli; Italy 68 INFN Sezione di Pavia(a); Dipartimento di Fisica(b), Universit`a di Pavia, Pavia; Italy 69 INFN Sezione di Pisa(a); Dipartimento di Fisica E. Fermi(b), Universit`a di Pisa, Pisa; Italy 70 INFN Sezione di Roma(a); Dipartimento di Fisica(b), Sapienza Universit`a di Roma, Roma; Italy 71 INFN Sezione di Roma Tor Vergata(a); Dipartimento di Fisica(b), Universit`a di Roma Tor Vergata, Roma; Italy 72 INFN Sezione di Roma Tre(a); Dipartimento di Matematica e Fisica(b), Universit`a Roma Tre, Roma; Italy 73 INFN-TIFPA(a); Universit`a degli Studi di Trento(b), Trento; Italy 74 Institut f¨ur Astro-und Teilchenphysik, Leopold-Franzens-Universit¨at, Innsbruck; Austria 75 University of Iowa, Iowa City IA; United States of America 76 Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America 77 Joint Institute for Nuclear Research, Dubna; Russia 78 Departamento de Engenharia El´etrica(a), Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; Universidade Federal do Rio De Janeiro COPPE/EE/IF(b), Rio de Janeiro; Universidade Federal de S˜ao Jo˜ao del Rei (UFSJ)(c), S˜ao Jo˜ao del Rei; Instituto de F´ısica(d), Universidade de S˜ao Paulo, S˜ao Paulo; Brazil 79 KEK, High Energy Accelerator Research Organization, Tsukuba; Japan 80 Graduate School of Science, Kobe University, Kobe; Japan 81 AGH University of Science and Technology(a), Faculty of Physics and Applied Computer Science, Krakow; Marian Smoluchowski Institute of Physics(b), Jagiellonian University, Krakow; Poland 82 Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland 83 Faculty of Science, Kyoto University, Kyoto; Japan 84 Kyoto University of Education, Kyoto; Japan 85 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan 86 Instituto de F´ısica La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina 87 Physics Department, Lancaster University, Lancaster; United Kingdom 88 Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom 89 Department of Experimental Particle Physics, Joˇzef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia 90 School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom 91 Department of Physics,Royal Holloway University ofLondon, Egham; United Kingdom 92 Department of Physics and Astronomy, University College London, London; United Kingdom 93 Louisiana Tech University, Ruston LA; United States of America 94 Fysiska institutionen, Lunds universitet, Lund; Sweden 95 Centre de Calcul de l’Institut National de Physique Nucl´eaire et de Physique des Particules (IN2P3), Villeurbanne;France 96 Departamento de F´ısica Teorica C-15 and CIAFF, Universidad Aut´onoma de Madrid, Madrid; Spain 97 Institut f¨ur Physik, Universit¨at Mainz, Mainz; Germany 98 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom 99 CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille; France 100 Department of Physics, University of Massachusetts, Amherst MA; United States of America 101 Department of Physics, McGill University, Montreal QC; Canada 102 School of Physics, University of Melbourne, Victoria; Australia 103 Department of Physics, University of Michigan, Ann Arbor MI; United States of America 104 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America 105 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus 106 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus 107 Group of Particle Physics, University of Montreal, Montreal QC; Canada 108 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia 109 Institute for Theoretical and Experimental Physics of the National Research Centre Kurchatov Institute, Moscow; Russia 110 National Research Nuclear University MEPhI, Moscow; Russia 111 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia 112 Fakult¨at f¨ur Physik, Ludwig-Maximilians-Universit¨at M¨unchen, M¨unchen; Germany 113 Max-Planck-Institut f¨ur Physik (Werner-Heisenberg-Institut), M¨unchen; Germany 114 Nagasaki Institute of Applied Science, Nagasaki; Japan 115 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan 116 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America 117 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands 118 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands 119 Department of Physics, Northern Illinois University, DeKalb IL; United States of America 120 Budker Institute of Nuclear Physics and NSU(a), SB RAS, Novosibirsk; Novosibirsk State University Novosibirsk(b); Russia 121 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia 122 Department of Physics, New York University, New York NY; United States of America 123 Ohio State University, Columbus OH; United States of America 124 Faculty of Science, Okayama University, Okayama; Japan 125 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America 126 Department of Physics, Oklahoma State University, Stillwater OK; United States of America 127 Palack´y University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic 128 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America 129 LAL, Universit´e Paris-Sud, CNRS/IN2P3, Universit´e Paris-Saclay, Orsay; France 130 Graduate School of Science, Osaka University, Osaka; Japan 131 Department of Physics, University of Oslo, Oslo; Norway 132 Department of Physics, Oxford University, Oxford; United Kingdom 133 LPNHE, Sorbonne Universit´e, Paris Diderot Sorbonne Paris Cit´e, CNRS/IN2P3, Paris; France 134 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America 135 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg; Russia 136 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America 137 Laborat´orio de Instrumenta¸c˜ao e F´ısica Experimental de Part´ıculas — LIP(a); Departamento de F´ısica(b), Faculdade de Ciˆencias, Universidade de Lisboa, Lisboa; Departamento de F´ısica(c), Universidade de Coimbra, Coimbra; Centro de F´ısica Nuclear da Universidade de Lisboa(d), Lisboa; Departamento de F´ısica(e), Universidade do Minho, Braga; Departamento de F´ısica Teorica y del Cosmos(f), Universidad de Granada, Granada (Spain); Dep F´ısica and CEFITEC of Faculdade de Ciˆencias e Tecnologia(g), Universidade Nova de Lisboa, Caparica; Portugal 138 Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic 139 Czech Technical University in Prague, Prague; Czech Republic 140 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic 141 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom 142 IRFU, CEA, Universit´e Paris-Saclay, Gif-sur-Yvette; France 143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America 144 Departamento de F´ısica(a), Pontificia Universidad Cat´olica de Chile, Santiago; Departamento de F´ısica(b), Universidad T´ecnica Federico Santa Mar´ıa, Valpara´ıso; Chile 145 Department of Physics, University of Washington, Seattle WA; United States of America 146 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom 147 Department of Physics, Shinshu University, Nagano; Japan 148 Department Physik, Universit¨at Siegen, Siegen; Germany 149 Department of Physics, Simon Fraser University, Burnaby BC; Canada 150 SLAC National Accelerator Laboratory, Stanford CA; United States of America 151 Physics Department, Royal Institute of Technology, Stockholm; Sweden 152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America 153 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom 154 School of Physics, University of Sydney, Sydney; Australia 155 Institute of Physics, Academia Sinica, Taipei; Taiwan 156 E. Andronikashvili Institute of Physics(a), Iv. Javakhishvili Tbilisi State University, Tbilisi; High Energy Physics Institute(b), Tbilisi State University, Tbilisi; Georgia 157 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel 158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel 159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece 160 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan 161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan 162 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan 163 Tomsk State University, Tomsk; Russia 164 Department of Physics, University of Toronto, Toronto ON; Canada 165 TRIUMF(a), Vancouver BC; Department of Physics and Astronomy(b), York University, Toronto ON; Canada 166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan 167 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America 168 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America 169 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden 170 Department of Physics, University of Illinois, Urbana IL; United States of America 171 Instituto de F´ısica Corpuscular (IFIC), Centro Mixto Universidad de Valencia — CSIC, Valencia; Spain 172 Department of Physics, University of British Columbia, Vancouver BC; Canada 173 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada 174 Fakult¨at f¨ur Physik und Astronomie, Julius-Maximilians-Universit¨at W¨urzburg, W¨urzburg; Germany 175 Department of Physics, University of Warwick, Coventry; United Kingdom 176 Waseda University, Tokyo; Japan 177 Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel 178 Department of Physics, University of Wisconsin, Madison WI; United States of America 179 Fakult¨at f¨ur Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universit¨at Wuppertal, Wuppertal; Germany 180 Department of Physics, Yale University, New Haven CT; United States of America 181 Yerevan Physics Institute, Yerevan; Armenia a Also at Borough of Manhattan Community College, City University of New York, NY; United States of America b Also at California State University, East Bay; United States of America c Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town; South Africa d Also at CERN, Geneva; Switzerland e Also at CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille; France f Also at D´epartement de Physique Nucl´eaire et Corpusculaire, Universit´e de Gen`eve, Gen`eve; Switzerland g Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain h Also at Departamento de F´ısica Teorica y del Cosmos, Universidad de Granada, Granada (Spain); Spain i Also at Departamento de F´ısica, Instituto Superior T´ecnico, Universidade de Lisboa, Lisboa; Portugal j Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates k Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece l Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America m Also at Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom n Also at Department of Physics, California State University, Fresno CA; United States of America o Also at Department of Physics, California State University, Sacramento CA; United States of America p Also at Department of Physics, King’s College London, London; United Kingdom q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia r Also at Department of Physics, Stanford University; United States of America s Also at Department of Physics, University of Fribourg, Fribourg; Switzerland t Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America u Also at Giresun University, Faculty of Engineering, Giresun; Turkey v Also at Graduate School of Science, Osaka University, Osaka; Japan w Also at Hellenic Open University, Patras; Greece x Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; Romania y Also at II. Physikalisches Institut, Georg-August-Universit¨at G¨ottingen, G¨ottingen; Germany z Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain aa Also at Institut f¨ur Experimentalphysik, Universit¨at Hamburg, Hamburg; Germany ab Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands ac Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary ad Also at Institute of Particle Physics (IPP); Canada ae Also at Institute of Physics, Academia Sinica, Taipei; Taiwan af Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan ag Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia ah Also at Instituto de F´ısica Te´orica de la Universidad Aut´onoma de Madrid; Spain ai Also at Istanbul University, Dept. of Physics, Istanbul; Turkey aj Also at LAL, Universit´e Paris-Sud, CNRS/IN2P3, Universit´e Paris-Saclay, Orsay; France ak Also at Louisiana Tech University, Ruston LA; United States of America al Also at LPNHE, Sorbonne Universit´e, Paris Diderot Sorbonne Paris Cit´e, CNRS/IN2P3, Paris; France am Also at Manhattan College, New York NY; United States of America an Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia ao Also at National Research Nuclear University MEPhI, Moscow; Russia ap Also at Physics Dept, University of South Africa, Pretoria; South Africa aq Also at Physikalisches Institut, Albert-Ludwigs-Universit¨at Freiburg, Freiburg; Germany ar Also at School of Physics, Sun Yat-sen University, Guangzhou; China as Also at The City College of New York, New York NY; United States of America at Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China au Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia av Also at TRIUMF, Vancouver BC; Canada aw Also at Universita di Napoli Parthenope, Napoli; Italy * Deceased