NEW REDUCTION IN THE JACOBIAN CONJECTURE

By Ludwik M. Drużkowski
Dedicated to Professor Tadeusz Winiarski on the occasion of his 60th birthday

Abstract

It is sufficient to consider in the Jacobian Conjecture (for every $n>1)$ only polynomial mappings of cubic linear form $F(x)=x+(A x)^{* 3}$, i. e. $F(x)=\left(x_{1}+\left(a_{1}^{1} x_{1}+\ldots+a_{n}^{1} x_{n}\right)^{3}, \ldots, x_{n}+\left(a_{1}^{n} x_{1}+\ldots+a_{n}^{n} x_{n}\right)^{3}\right)$ where the matrix $F^{\prime}(x)-I=3 \Delta\left((A x)^{* 2}\right) A$ is nilpotent for every $x=\left(x_{1}, \ldots, x_{n}\right)$. In the paper we give a new contributions to the Jacobian Conjecture, namely we show that it is sufficient in this problem to consider (for every $n>1$) only cubic linear mappings $F(x)=x+(A x)^{* 3}$ such that $A^{2}=0$.

1. Introduction and notation. Let \mathbb{K} denote either the field of complex numbers \mathbb{K} or the field of reals \mathbb{R}. Basis in the domain and codomain vector spaces \mathbb{K}^{n} are assumed to be fixed and identical, so a linear mapping A from \mathbb{K}^{n} into \mathbb{K}^{n} is identified with its matrix and denoted by the same letter A (I denotes the identity matrix). Let M_{n} denote the set of $n \times n$ square matrices with entries in \mathbb{K}. A vector $x \in \mathbb{K}^{n}$ is treated as one column matrix and x^{T} denotes its transpose, i. e. $x^{T}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}$. Let $a_{j}, b_{j}, c_{j}: \mathbb{K}^{n} \rightarrow \mathbb{K}$ be linear forms and let the symbol $a_{j} x$ (resp. $b_{j} x, c_{j} x$) denote the value of the linear form a_{j} (resp. b_{j}, c_{j}) at a point $x \in \mathbb{K}^{n}$, i. e. $a_{j} x=a_{j}^{1} x_{1}+\ldots a_{j}^{n} x_{n}$, $j=1, \ldots, n$. Denote for short the square matrix $A:=\left[a_{i}^{j}: i, j=1, \ldots, n\right]$ and the vector $(A x)^{T}:=\left(a_{1} x, \ldots, a_{n} x\right)$, i.e. $A x$ is one column matrix. If $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$ is a column vector, then we denote the k power of v by $v^{* k}:=\left(\left(v_{1}\right)^{k}, \ldots,\left(v_{n}\right)^{k}\right)^{T}$ and by $\Delta\left(v^{* k}\right)$ we denote the diagonal $n \times n$ matrix

$$
\Delta\left(v^{* k}\right):=\left[\begin{array}{cccccc}
\left(v_{1}\right)^{k} & 0 & 0 & \ldots & 0 & 0 \\
0 & \left(v_{2}\right)^{k} & 0 & \ldots & 0 & 0 \\
\ldots \ldots \ldots . & & & & & \\
0 & 0 & \ldots & 0 & \left(v_{n-1}\right)^{k} & 0 \\
0 & 0 & \ldots & 0 & 0 & \left(v_{n}\right)^{k}
\end{array}\right]
$$

If $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ is a polynomial mapping, then we denote $\operatorname{Jac} F(x):=\operatorname{det}\left[\frac{\partial F_{i}}{\partial x_{j}}(x): i, j=1, \ldots, n\right]$. Let a polynomial mapping $F=$ $\left(F_{1}, \ldots, F_{n}\right)$ have a cubic linear form $F(x)=x+(A x)^{* 3}$ that is $F_{j}(x)=$ $x_{j}+\left(a_{j} x\right)^{3}, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}, j=1, \ldots, n$.

We recall that the n-dimensional Jacobian Conjecture $(J C)_{n}(n>1)$ asserts

If F is any polynomial mapping of \mathbb{K}^{n} and $\operatorname{Jac} F(x)=$ const $\neq 0$, then F is injective.
By the Jacobian Conjecture (for short (JC)) we mean that $(J C)_{n}$ holds for each $n>1$.

If F is injective polynomial transformation of \mathbb{C}^{n}, then F is a polynomial automorphism, cf. [1, 8]. Therefore the Jacobian Conjecture is sometimes formulated with the requirement that F has to be a polynomial automorphism. We have the following reduction theorem.

Theorem 1. [2] In order to verify the Jacobian Conjecture (for every $n>1$) it is sufficient to check the Jacobian Conjecture (for every $n>1$) only for polynomial mappings $F=\left(F_{1}, \ldots, F_{n}\right)$ of a cubic linear form

$$
F(x)=x+(A x)^{* 3}, \quad \text { i.e. } F_{j}(x)=x_{j}+\left(a_{j} x\right)^{3}, \quad j=1, \ldots, n .
$$

It is known ($\mathbf{1}, \mathbf{2}$) that $\operatorname{Jac} F=1$ if and only if the matrix $A_{x}:=$ $\left[\left(a_{j} x\right)^{2} a_{j}^{i}: i, j=1, \ldots, n\right]=\Delta\left((A x)^{* 2}\right) A$ is nilpotent for every $x \in \mathbb{K}^{n}$. Some interesting applications of Th. 1 to the Jacobian Conjecture can be found in [4, 5, 7]. Note that

$$
\begin{gathered}
F(x)=x+A_{x}(x)=x+\Delta\left((A x)^{* 2}\right)(A x) \\
F^{\prime}(x)=I+3 A_{x}=I+3 \Delta\left((A x)^{* 2}\right) A,
\end{gathered}
$$

and call A the matrix of the cubic linear mapping F. Hence, for every $x \in \mathbb{K}^{n}$ there exists an index of nilpotency of the matrix A_{x}, i.e. a number $p(x) \in \mathbb{N}$ such that $A_{x}^{p(x)}=0$ and $A_{x}{ }^{p(x)-1} \neq 0$. We define the index of nilpotency of the mapping F to be the number ind $F:=\sup \left\{p(x) \in \mathbb{N}: x \in \mathbb{K}^{n}\right\}$. Obviously ind $F \leq n$.

2. We will prove the following.

Theorem 2. (new reduction theorem) In order to verify the Jacobian Conjecture (for every $n>1$) it is sufficient to check the Jacobian Conjecture (for every $n>1$) only for polynomial mappings $F=\left(F_{1}, \ldots, F_{n}\right)$ of the cubic linear form

$$
F_{j}(x)=x_{j}+\left(a_{j} x\right)^{3}, \quad j=1, \ldots, n,
$$

having an additional nilpotent property of the matrix $A:=\left[a_{i}^{j}: i, j=1, \ldots, n\right]$, namely $A^{2}=0$.

Proof. Due to Th. 1 we can take $F: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ of the form $F(x)=$ $x+(A x)^{* 3}, x \in \mathbb{K}^{n}$. Evidently F is a polynomial automorphism if and only if $x+\delta(A x)^{* 3}$ is a polynomial automorphism for every (some) $\delta \in \mathbb{K} \backslash\{0\}$. Put $\widehat{F}(x, y):=\left(x+\delta(A x)^{* 3}, y\right), \delta \neq 0,(x, y) \in \mathbb{K}^{n} \times \mathbb{K}^{n}$. Obviously F is a polynomial automorphism of \mathbb{K}^{n} if and only if $\widehat{F}: \mathbb{K}^{2 n} \rightarrow \mathbb{K}^{2 n}$ is an automorphism of $\mathbb{K}^{2 n}$. We define polynomial automorphisms of $\mathbb{K}^{2 n}$ by the formulas:

$$
Q(x, y):=\left(\alpha x-\beta y, y+(\alpha A x-\beta A y)^{* 3}\right) \quad \text { where } \alpha \beta \neq 0
$$

and

$$
P(x, y):=\left(\frac{1}{\alpha} x+\frac{\beta}{\alpha} y, y\right) \quad \text { where } \alpha \beta \neq 0
$$

Put $G:=P \circ \widehat{F} \circ Q: \mathbb{K}^{2 n} \rightarrow \mathbb{K}^{2 n}$. It not difficult to verify that

$$
G(x, y)=\left(x+\frac{(\delta+\beta) \alpha^{2}}{\beta^{3}}\left(\beta A x-\frac{\beta^{2}}{\alpha} y\right)^{* 3}, y+(\alpha A x-\beta y)^{* 3}\right)
$$

The mapping F is a polynomial automorphism if and only if G is a polynomial automorphism. Now we choose $\alpha \neq 0, \beta \neq 0$ such that $\frac{(\delta+\beta) \alpha^{2}}{\beta^{3}}=1$ (it is always possible if $\frac{\alpha^{2}}{\beta^{2}} \neq 1$). Hence we get

$$
G(x, y)=\left(x+\left(\beta A x-\frac{\beta^{2}}{\alpha} y\right)^{* 3}, y+(\alpha A x-\beta y)^{* 3}\right)
$$

Denote by N a block matrix (with entries in M_{n}) of the form

$$
N:=\left(\begin{array}{cc}
\beta A & -\frac{\beta^{2}}{\alpha} A \\
\alpha A & -\beta A
\end{array}\right)
$$

Observe that we can write $G(w)=w+(N w)^{* 3}, w \in \mathbb{K}^{2 n}$. It is easy to check that $N^{2}=0$. Therefore the theorem is proved.

Remark 1. Since $A^{2}=0, \operatorname{rank} A \leq \frac{n}{2}$.
In the example given in [3, Ex. 7.8], and also investigated in [6, Ex. 6.1], the matrix A of an automorphism $F(x)=x+(A x)^{* 3}: \mathbb{K}^{15} \rightarrow \mathbb{K}^{15}$ has the form

$$
\left(\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & -1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & -2 & 0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & -2 & 0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & -2 & 0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 & -1 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
1 & 0 & 0 & -2 & -1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -2 & -1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -1 & 2 & 0 & 0 & 0 & -1 & 1 & 1 & 1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 2 & 1 & -1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & -2 & 0 & 0 & 0 & 1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & -2 & -1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 & -1 & 0
\end{array}\right)
$$

It is easy to check that ind $A=2$, rank $A=5$ and ind $F=5$.
Remark 2. It was proved earlier ([2]) that in Th. 1 we can additionally assume that $(*)$ the matrix $A=A_{c}$ for some point $c \in \mathbb{K}^{n}$ and ind $A=$ ind F. If we investigated the Jacobian Conjecture for cubic linear assuming ind $A=2$, then the property $(*)$ usually does not hold (cf. the mentioned above example where ind $A=2<5=$ ind F).

References

1. Bass H., Connell E.H., Wright D., The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
2. Drużkowski L.M., An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313.
3. \qquad , The Jacobian Conjecture, preprint 492, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1991.
4. _, The Jacobian Conjecture in case of rank or corank less than three, J. Pure Appl. Algebra 85 (1993), 233-244.
5. Gorni G., Tutaj-Gasińska H., Zampieri G., Drużkowski matrix search and D-nilpotent automorphisms, Indag. Math. 10(2) (1999), 235-245.
6. Gorni G., Zampieri G., On cubic-linear polynomial mappings, Indag. Math. 8(4) (1997), 471-492.
7. Hubbers E.-M. G. M., Nilpotent Jacobians, Universal Press, Veenendal 1998, ISBN 90-9012143-9.
8. Rusek K., Winiarski T., Polynomial automorphisms of \mathbb{C}^{n}, Univ. Iagell. Acta Math. 24 (1984), 143-149.

Received November 16, 2001
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
e-mail: druzkows@im.uj.edu.pl

