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Many research programs aiming to deal with the sign problem were proposed since the advent
of lattice field theory. Several of these try to achieve this by exploiting properties of analytic
functions. This is also the case for our study. There auxiliary complex variables are introduced
and desired weight is obtained after integrating them out. In this note we clarify conceptual
difficulties with this procedure encountered in previous works. In the process we observe an
exciting connection with thimbles and discover an interesting hidden symmetry present in the
problem. Problem of negative eigenvalues of the action will be revisited and considered from a
different perspective. As a byproduct we perform simulations of simple quantum systems directly
in Minkowski time.
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Simulations of gaussian systems in Minkowski time Blazej Ruba

1. Introduction

Our purpose is to numerically compute averages with respect to a holomorphic weight ρ:

〈O〉ρ =

∫
Γ

dz ρ(z)O(z)∫
Γ

dz ρ(z)
, (1.1)

where Γ⊆Cn is an n-dimensional surface without a boundary, typically Γ=Rn. If ρ|Rn is complex
and n is large, this problem is intractable. A possible way out is to find a positive representation for
ρ , i.e. a positive function P on R2n such that for analytic O sufficiently well behaved at infinity

〈O〉ρ = 〈O〉P :=
∫
R2n dxdy P(x,y)O(x+ iy)∫

R2n dxdy P(x,y)
. (1.2)

Some suggestions how to find positive representations were put forward [4, 5, 6, 7]. Existence is
guaranteed by general, but not very practical constructions [1, 2, 3]. In this work we develop the
Beyond Complex Langevin (BCL) approach proposed in [8].

Assume that P is an analytic positive distribution. Then it may be extended uniquely to com-
plex x,y. We introduce coordinates z = x+ iy and z = x− iy. Notice that z is equal to z∗ - the
complex conjugate of z - only on the subspace R2n ⊆ C2n. Differential 2n-form P(z,z)dzdz is
closed1, so Stokes theorem may be used to replace R2n by a more convenient integration surface.
Suppose that there exist n-cycles Γ⊆ {z},Γ⊆ {z} such that P is rapidly decreasing on Σ = Γ×Γ.
Let B(Λ) = {(z,z) ∈ C2n||z|2 + |z|2 ≤ Λ2} and choose a tube T (Λ) which connects B(Λ)∩R2n

with B(Λ)∩Σ, so that C (Λ) = T (Λ)∪B(Λ)∩ (Rn∪Σ) is a closed cylinder. Then∫
C (Λ)

dzdz P(z,z)O(z) = 0. (1.3)

It follows that the integrals over Rn and Σ are equal, provided that the integral over T (Λ) tends to
zero as Λ→ ∞. In this case a sufficient condition for (1.2) is given by∫

Γ̄

dz P(z,z) = N ρ(z). (1.4)

2. Examples

Single variable
In [8] a positive representation ρ = e−σz2

was found as a solution to (1.4). One may take
P(z,z) = e−SBCL(z,z) with an action SBCL = a∗z2+2bzz+az2, where a,b are given in terms of σ and
one free parameter - a hyperbolic angle χ ∈ (0,∞), a = −σ∗ sinh2 (χ), b = |σ |

2 sinh(2χ). Choice
sinh(χ) =

∣∣Re σ

Im σ

∣∣ reproduces the result obtained in ([9]) using the complex Langevin approach.
Limit χ → ∞ is even more interesting. For z = z∗ action takes the form

SBCL(z,z∗) = 4sinh2 (χ)
(
Im
√

σz
)2

+ |σz2|+O
(
e−2χ

)
. (2.1)

It follows that asymptotically P is concentrated on the line L= {z ∈ C | Im(
√

σz2) = 0},

P(z, z̄)|z̄=z∗
χ→+∞−−−−→N δ

(
Im
√

σz2
)

ρ(z), (2.2)

1This is equivalent to Cauchy-Riemann equations.
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This is the original weight ρ with the integration contour rotated so that the phase of ρ is constant.
Equation (2.2) could be attributed to the fact that the action we have considered is quadratic.

We will see later that it remains true also for the action SBCL = (a∗z2 +2bzz̄+az̄2)2. In this case

ρ(z) =
∫
√

a∗R
dz e−SBCL(z,z) = N

√
σz2e−

1
2 σ2z4

K 1
4

(
σ2z4

2

)
, (2.3)

One of the new results is the calculation [10] of moments, 〈z2k〉ρ(z) = 〈z2k〉P(z,z̄) = 1√
π

Γ( 2k+1
2 )

Γ( k+2
2 )

( 1
2σ

)k.

〈z2k〉ρ and 〈z2k〉P were computed independently, which provides another consistency check.
Just as in the previous example, ρ(z) doesn’t depend on χ . This may be traced back to the fact

that in both cases SBCL is annihilated by the commuting differential operators

D = sinh(χ)
∂

∂ χ
+

(
|σ |z
σ

sinh(χ)− cosh(χ)z
)

∂

∂ z
, (2.4a)

D = sinh(χ)
∂

∂ χ
+

(
|σ |z
σ∗

sinh(χ)− cosh(χ)z
)

∂

∂ z
. (2.4b)

The limit χ → ∞ may be analyzed using the saddle point method. It turns out that the gradi-
ent of SBCL vanishes on L asymptotically for χ → ∞. This set may be parametrized as L = {x+
iy∗(x) | x∈R}, where y∗(x)=− Im σ

|σ |+Re σ
x. For any test function f the integral

∫
R2 dxdy P(x,y) f (x,y)

may be simplified by replacing f (x,y) with f (x,y∗(x)). The only dependence on y is then that of
the weight P(x,y) itself. In contrast to the standard saddle point method, integration

∫
dy P(x,y)

may not be performed by expanding SBCL to the second order in y− y∗(x). The problem is that the
second derivatives of S vanish at 0. It is necessary to keep the quartic terms. The final result is∫

R
dy P(x,y) = N ρ(x+ iy∗(x)). (2.5)

This completes the proof of (2.2) for the quartic action. Results of this section suggests that there
might exist a connection between our approach and the Lefschetz thimble method.

Quantum mechanics
We will now discuss positive representations for simple Feynman weights in Minkowski time.

Following [8] we take a simple ansatz for the BCL action:

SBCL(z,z) =
n

∑
j=1

[
iβ z2

j − iβ z2
j +2bz jz j +2γz jz j+1 +2γz j+1z j

]
, (2.6)

where zn+1 = z1, zn+1 = z1. Eigenvalues of SBCL may be found with the aid of Fourier transfor-
mation. The final result is λk± = 2b+4γ cos

(2πk
n

)
±2|β |, k = 0, ...,n−1. Eigenvalues λ0± are

nondegenerate. For each k 6= 0 there are two linearly independent eigenvectors to eigenvalues λk+

and λk−. Weight ρ = eiSphys is obtained by integrating out z variables:

Sphys(z) =−i log
∫

dz e−SBCL =
n

∑
j=1

[
2bγ

β
(z j+1− z j)

2 +
4γ2

β

(
z j+2− z j

2

)2

− (b+2γ)2−β 2

β
z2

j

]
.

(2.7)
Demanding that it coincides (up to an unusual discretization of the kinetic term) with the action
of harmonic oscillator with angular frequency ω and time step ε we get conditions 2γ(b+2γ)

β
= m

2ε
,
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(b+2γ)2−β 2

β
= mω2ε

2 . One can show that these equations are in contradiction with positivity of λk±.
We will address this issue separately for the free particle (ω = 0) and for the harmonic oscillator.

Free particle
For ω = 0 and negative β , BCL action (2.6) may be rewritten as

SBCL =
n

∑
j=1

[ m
2ε

(z j+1− z j)(z j+1− z j)+2|β |(x j− y j)
2
]
. (2.8)

In this case λ0− = 0, but other eigenvalues are positive. Existence of the zero mode reflects the
translational symmetry of the system. It may be removed by changing the boundary conditions
from periodic to Dirichlet. It was shown in [8] that e−SBCL becomes a positive representation for the
Feynman weight if the limit β →−∞ is taken before the continuum limit. This removes unusual
terms from the acton Sphys. Formula (2.8) show that in this limit P(z,z∗) becomes concentrated on
the subspace {x+ iy ∈ Cn | ∀ j : x j = y j ∈ R}, so we have

P
β→−∞−−−−→N

n

∏
j=1

δ (x j− y j)e
im
2ε
(z j+1−z j)

2
. (2.9)

This is the standard Feynman weight with contours of all z j rotated by π

4 .
It turns out that taking the limit β →−∞ is not necessary. To understand the properties of S at

finite β , we reexpress it in terms of new variables u j =
1√
2
(x j + y j), v j =

1√
2
(x j− y j):

SBCL =
n

∑
j=1

( m
2ε

(u j+1−u j)
2 +

m
2ε

(v j+1− v j)
2 +4|β |v2

j

)
. (2.10)

It describes a free particle u j and a spurious degree of freedom v j. Correlation function for v j at
large n may be found via contour integration or strong coupling expansion. The result is

〈v j+dv j〉 ≈
exp
(
−2arsinh

√
2|β |ε

m d
)

8
√
|β |
(
|β |+ m

2ε

) for n→ ∞, (2.11)

Therefore v j decouples in the continuum limit if and only if β changes with ε in such a way that
limε→0

β

ε
=−∞. This condition is much weaker than requirement that β →−∞ at fixed ε .

Harmonic oscillator
It was observed already in [8] that what we did for the free particle can’t be repeated verbatim

for the harmonic oscillator. The problem is that some of the eigenvalues λk± become negative.
We will now show that this phenomenon is a feature of the system, rather than peculiarity of our
approach. Consider the Minkowski time action

S =
n

∑
j=1

[
m
2ε

(x j+1− x j)
2− mω2ε

2
x2

j

]
. (2.12)

In terms of the Fourier amplitudes x j =
1√
n ∑k x̃ke

2πik j
n , action takes the form

S = ∑
k

[
2m
ε

sin2 kπ

n
− mω2ε

2

]
x̃kx̃−k. (2.13)
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For small T = nε there is only one negative eigenvalue, corresponding to variable x̃0. One can get
rid of it by imposing Dirichlet boundary condition. Two additional eigenvalues become negative
after each oscillation period 2π

ω
. These can’t be eliminated so easily. Presence of eigenvalues with

different signs means, that to obtain postive and normalizable weight one has to rotate contours of
integration by a k-dependent angle:

x̃k =

{
e−

iπ
4 q̃k for |k| ≤ κ,

e
iπ
4 q̃k for |k|> κ,

(2.14)

where κ =
⌊

ωT
2π

⌋
. Then we perform the inverse Fourier transformation, q j =

1√
n ∑

K
k=−K q̃ke

2πik j
n . In

new variables action takes the form S = S1 +S2, where

S1(q) = i
n

∑
j=1

[
m
2ε

(q j+1−q j)
2− mω2ε

2
q2

j

]
, (2.15a)

S2(q) = i
m
T

κ

∑
k=−κ

(
ω

2
ε

2−4sin2 kπ

n

)∣∣∣∣∣ n

∑
j=1

q je
2πik j

n

∣∣∣∣∣
2

. (2.15b)

0 2 4 6 8

-0.4

-0.2

0.0

0.2

0.4

ωt

-
i<
x(
t)
x(
0)
>

Figure 1: Two point function
tr
(

e−iT Ĥ x̂(t)x̂
)

tr(e−iT Ĥ)
, t ∈

[0,T ] for the harmonic oscillator calculated in a
Monte Carlo simulation. Black line is the exact
result. Uncertainties are too small to be seen on
this plot.

The first term is up to i factor the standard
action for harmonic oscillator in Minkowski
time with x j replaced by q j. Due to the pres-
ence of − potential term in eiS1 blows up
at infinity. Second term stabilizes this di-
vergence. For real q j distribution eiS(q) is
positive and normalizable. By construction
it is equivalent to the Feynman weight. In
fact this is the exact thimble decomposition.
Since x = 0 is the only saddle point, there is
only one thimble. The price to pay is intro-
duction of nonlocal terms in the action and
in the relation between x j and q j. Two point
function calculated by Monte Carlo simula-
tion of the action (2.15) is presented on Fig-
ure 1.

There is an interesting interpretation of
the negative eigenvalues of S(x). Classical Morse theorem [11] states that the second variation of
the action with the endpoints fixed is positive-definite for sufficiently small times and develops a
negative eigenvalue each time a focal point is crossed. Purely quadratic actions are equal to their
second variation, so information about the eigenvalues of S(x) is obtained from this proposition. In
the case of periodic boundary conditions one has to take into account the fact that there is one more
variable integrated over - namely the coordinate of the endpoint. Thus the number of negative
eigenvalues of S with periodic boundary conditions is either equal or greater by one than then
number of negative eigenvalues with Dirichlet boundary conditions. This is in agreement with our

4
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explicit calculations. The upshot is that existence of caustics seems to be an obstruction to the
existence of local positive representations.

Quantum Fields
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Figure 2: Real and imaginary parts of the eigenvalues of S after contour rotations for fields and
small time rotation. Hot colors correspond to larger eigenvalues.

Ideas presented in detail for the harmonic oscillator may be adapted to systems with infinitely
many degrees of freedom without much trouble. We start from the lattice action for a complex
scalar in d = 1+1, S[φ ] = a2

2 ∑x,µ
(
∂µφ x∂ µφx−m2φ xφx

)
, where ∂ is the forward lattice derivative.

Indices are raised and lowered with the Minkowski metric diag(1,−1). Fourier transformation
followed by a rotation of inegration contours and inverse Fourier transformation leads to the action

iS[ψ] =− 1
2V ∑

p

∣∣p̂µ p̂µ −m2∣∣ |ψ̃(p)|2 , (2.16)

where p̂µ = 2
a sin

(
apµ

2

)
. Fields are related by φx = ∑y Kxyψy, φ x = Kxyψ∗y . We have Kxy 6= K∗xy, so

φ is not the complex conjugate of φ . Action S[ψ] is strongly nonlocal and UV singular. However
we do have eiS > 0. There is still one problem to be fixed: momentum modes close to the cutoff and
near the light cone are not damped. Therefore any results obtained with this action are dominated
by discretization errors. This is fixed by a small Wick rotation x0 7→ x0e−iε . The effect is that
eigenvalues of S corresponding to large momentum are damped. Below the cutoff this effect is
negligible and the geometry of the light cone is accurately reproduced (cf. Fig. 2). Rotation of
time introduces a mild sign problem which can be dealt with by reweighting. Using this technique
we have evaluated the two point function, cf. Figure 3. We observe oscillations inside and damping
outside the light cone, which is a characteristic feature of Minkowski time propagators. We remark
that we have seen finite volume effects much larger than in the Euclidean theory.

Transformation to (2.16) may be written down explicitly in the infinite volume continuum:

φ(x) =
∫

ddy
(

e
iπ
4 δ+(x− y;m)+ e−

iπ
4 δ−(x− y;m)

)
ψ(y), (2.17a)

δ±(x;m) =
∫ dd p

(2π)d θ(±(p2−m2))e−ipx. (2.17b)

For d = 2 this reduces to

δ+(x;m)|d=2 =
m

2π2
√
−(x− i0)2

K1(m
√
−(x− i0)2)+ c.c.. (2.18)

This distribution diverges quadratically as x→ 0. The action may also be written down as an
integral over x,y of a bilocal Lagrangian with a quadratic singularity for x→ y.

5
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Figure 3: Klein-Gordon propagator in d = 1+1 evaluated by simulating the action (2.16).

3. Summary and outlook

We presented a treatment of the Beyond Complex Langevin approach clear of conceptual dif-
ficulties. In the process an interesting connection with thimbles has been observed. Moreover we
have discovered that BCL actions considered so far have a hidden symmetry generated by differ-
ential operators D,D. We hope that better understanding of this structure will allow to construct
positive representations for more complicated complex weights in the future. As a side-effect of
considering the negative eigenvalues of actions we developed techniques for simulating simple
quantum systems in Minkowski time. Including interactions remains a challenge for the future.
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