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Abstract
We show that evenwhen spins and orbitals disentangle in the ground state, spin excitations are
renormalized by the local tuning of eg orbitals in ferromagnetic planes ofK2CuF4 and LaMnO3.
As a result, dressed spin excitations (magnons) obtainedwithin the electronicmodel propagate as

quasiparticles and their energy renormalization depends onmomentum

k . Thereforemagnons in

spin-orbital systems go beyond the paradigmof the effectiveHeisenbergmodel with nearest neighbor
spin exchange derived from the ground state—spin-orbital entanglement in excited states predicts
largemagnon softening at the Brillouin zone boundary, and in case of LaMnO3 themagnon energy at
theM=(π,π) pointmay be reduced by∼45%. In contrast, simultaneously the stiffness constant near
theGoldstonemode is almost unaffected.We elucidate physics behindmagnon renormalization in
spin-orbital systems and explainwhy longwavelengthmagnons are unrenormalized while
simultaneously energies of short wavelengthmagnons are reduced by orbital fluctuations. In fact, the
k -dependence of themagnon energy ismodifiedmainly by dispersionwhich originates from spin
exchange between second neighbors along the cubic axes a and b.

1. Introduction

In 3d transitionmetal compounds strong intraorbital Coulomb interactionU leads to aMott (or charge-
transfer) insulator. Charge excitations between two neighboring 3d ionswithm electrons per site,

+ -d d d di
m

j
m

i
m

j
m1 1, that occur due tofinite kinetic energyµt , generate superexchange interactions

µ =J t U4 2 [1]. In their pioneeringworkKugel andKhomskii [2] have shown thatwhen degenerate orbitals
are partly filled, spin-orbital superexchange couples spin and orbital degrees of freedom. It leads to phases with
spin-orbital superexchange in two-dimensional (2D) [3–8] or in three-dimensional (3D) [9–20] systems.When
both spin and orbital degrees of freedom are active joint spin-orbital quantum fluctuations arise andmay even
destabilize long-range order [21]. These fluctuations are the strongest for t2g orbital degrees of freedom [22],
where the spin exchange derived from spin-orbital superexchange is strongly entangled and has a dynamical
character [23, 24]. Inmodel systems spin-orbital entanglementmay be used to identify quantumphase
transitions [25].

Orbital degeneracy opens the route towards complex types of spin-orbital orderwith coexisting
antiferromagnetic (AF) and ferromagnetic (FM) exchange bonds. Frequently such systems are analyzed using
the classical Goodenough–Kanamori rules [26]which emphasize the complementarity of spin and orbital order,
i.e. alternating orbital (AO) order supports FM spin exchange and ferro-orbital order supports AF exchange.
They follow from the assumption that spin and orbital excitations are independent of each other and spin
exchange interactionsmay be derived from the spin-orbital superexchange by averaging over the orbital state.
Indeed, when joint spin-orbital fluctuations are quenched, e.g. by lattice distortions, these rules apply and the
disentangled superexchange helps to understand experimental observations [13]. A good example of this
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approach is the parent compound of colossalmagnetoresistancemanganites LaMnO3 [27], with small spin-
orbital entanglement [28]. Therefore, spinwavesmeasured in inelastic neutron scattering [29–31] and optical
spectral weights [32] could be successfully interpreted using the effective anisotropicHeisenbergmodel.

In dopedmanganites double exchange provides a large FM exchange interaction [27]. It is responsible for the
onset of FMorder andmodifies occupied eg orbitals involved in the hopping process as demonstrated in the one-
dimensional (1D) spin-orbitalmodel [33]. Hole-orbital and orbital-lattice fluctuations were identified as the
main origin of the observed unusual softening of themagnon spectrum at the zone boundary [34–36]. It has
been shown that orbitons depend thereby onmagnons inMott insulators with orbital degrees of freedom
[37–40], and both contribute to spectral properties [41, 42].

In 1D cuprates [43] (2D iridates [44]) orbitons (excitons) are dressed bymagnons, while the opposite effect
of orbital excitations onmagnonswas considered only in the context of the strong zone boundarymagnon
softening observed experimentally inmanganites close to half doping [35]. In this paper we demonstrate that
spin excitations in a FMplanewithAOorder, as inK2CuF4 [45] or LaMnO3 [46], are indeed renormalized by the
changes of occupied eg orbitals, leading tomagnons dressed by orbitalfluctuations and propagating together as a
quasiparticle in aMott insulator. This phenomenon is similar to the local changes of AF spin order by an added
hole in superconducting cuprates [47].

The remaining of the paper is organized as follows. In section 2we introduce a general formof spin-orbital
Hamiltonianwith eg degrees of freedom and present themagnon excitations starting fromorbital order in the
ground state. Next we release the constraint of frozen orbitals and present the variational way offindingmagnon
excitations for optimized orbitals in section 3. A simplified version of this approach and a numerical ansatz (NA)
which serves to verify the predictions of the variational approach are presented in section 4. The results for
magnons inK2CuF4 are given in section 5.We consider a spin excitation in the FMplanes of LaMnO3 and
analyze the optimal orbital angles near the excitation in section 6. Therewe also show that the effective spin
model will include nearest neighbor J1, next-nearest neighbor J2, and third next neighbor J3 spin exchange,
although the spin-orbital superexchange couples only nearest neighbors. Analytic estimation of the
renormalized interaction J1 which determines themagnon bandwidth is presented in the appendix. The paper is
concludedwith a short summary in section 7.

2. Spin-orbitalmodel andmagnons for frozen orbitals

Webeginwith the eg orbital basis (labeled in analogy to ñ∣ and ñ∣ spin =S 1

2
states):

z xñ º - ñ º -∣ ( ) ∣ ( ) ( )z r x y
1

6
3 ,

1

2
, 1c c

2 2 2 2

i.e. a directional orbital z ñ∣ c along the c axis, and an orthogonal to it planar orbital x ñ∣ c . The energetic splitting of
eg states

å åz z x x t= ñá - ñá =ˆ (∣ ∣ ∣ ∣) ˆ ( )( )H
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2
i i i i , 2z

i
c c c c
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selects the favored orbital at site i by the tetragonal crystal fieldµEz .We consider a generic 2D eg spin-orbital
superexchangemodel on a square lattice

 = + + +ˆ ( ˆ ˆ ˆ ) ˆ ( )J c H c H c H E H , 3z z1 1 2 2 3 3

which explains FMorder of spins S in the ab planes of K2CuF4 =( )S 1

2
[48] or LaMnO3 (S=2) [10], with three

{ ˆ }Hn terms explained below. The positive coefficients {c1, c2, c3} depend on themultiplet structure of excited 3d8

Cu3+ states [48] (3d5Mn2+ states [10]) viaHund’s exchange JH/U [13]. In the ground state an eghole at a Cu
2+

ion in K2CuF4 (an eg electron at aMn3+ ion in LaMnO3) occupies a linear combination of two orbital states (1) at
site i [1]

J J z J xñ º ñ + ñ∣ ( )∣ ( )∣ ( )i cos 2 i sin 2 i . 4c c

When tetragonal distortion is ignored (Ez=0), the occupied orbital states on two sublatticesA andB are
symmetric/antisymmtric combinations of eg orbital basis z xñ ñ{∣ ∣ },c c states with J p=  2, otherwise for
positive (negative) values ofEz, enhanced amplitude of - ñ∣x y2 2 - ñ(∣ )z r3 2 2 orbital states is favored.

The superexchange partµJ in equation (3) involves spin


{ ˆ}Si and orbital pseudospin t g{ˆ }( )
i (γ=a, b, c)

operators—it consists of three termswhich follow fromhigh-spin (Ĥ1), low-spin interorbital (Ĥ2), and low-spin
intraorbital (Ĥ3) charge excitations along nearest neighbor á ñij bonds
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The orbital operators t̂( )
i

a and t̂( )
i

b for ab planes follow from t̂( )
i

c along the c axis by a cubic transformation [48],
see equation (2).

In K2CuF4 one finds FMorder at JH/U∼0.2 [49], coexistingwithAOorder [50] of hole orbital states with
angles±θopt on the two sublattices,A andB. Averaging the orbital operators over this AOorder in ab planes gives

spinHamiltonianwith FMexchange (with >àJ 0), = - åà á ñ

 ˆ · ˆH J S Sij i j, which served to interpret the
experimental data [51, 52]. To investigatemagnons (spinwaves)we create a spin excitation at site i=0 by
decreasing the value of =S Sz

0 to = -( )S S 1z
0 . In the simplest approachwe disentangle [24] spin-orbital

superexchange both in the ground and in excited states and use the same frozenAOorder shown infigure 1(a) to
determine spin exchange J◊.

A spin excitation (amagnon) itself is best described by the transformation toHolstein–Primakoff (HP)
bosons [53]. In the linear spin-wave theorymagnon energy consists of two contributions andwe introduce:

(i) Ising energy for a localizedHPboson º à
( )I J S40 and

(ii) the propagating term gº - à


( )( )P k J S4 k

0 .

The latter originates fromquantumfluctuationsµ- +à
+ - - +( ˆ ˆ ˆ ˆ )J S S S Si j i j

1

2
, where g = åd

d 
 
·ek

k1

4
i depends on the

momentum =


( )k k k,a b with p pÎ -a [ )k , . Here d

stands for one of four nearest neighbors of the central site

i=0 shown infigure 1(a). The above two terms determine themagnon dispersion in a 2D ferromagnet,

w g= + = -à


 ( ) ( ) ( )( ) ( ) ( )I P k J S4 1 , 8
k k
0 0 0

which serves as a reference below. The breaking of SU(2) symmetry is reflected by aGoldstonemode (at =

k 0),

and w = à
 J Skk

2 for 

k 0—wefind that this result is insensitive to spin-orbital coupling.

In general however orbitals are not frozen in a spin-orbital system andwill respond locally to a spin
excitation.Onemight expect that this reduces spin exchange, à ¨J J and themagnon dispersionwould soften.

Indeed, we have found that themagnon energy w ( )
k
0 is reduced but this effect is rather subtle and the

renormalization of exchange interaction J♦ depends onmomentum

k .

Figure 1.Artist’s view of a spin excitation (inverted red arrow) in the FMplane of K2CuF4 (green arrows) andAOorder (of hole
orbitals) at = -E J0.8z , with: (a)frozen orbitals; (b)optimized orbitals at the central spin-flip site itself and at four its neighboring
sites in the square lattice, forming a quasiparticle (dressedmagnon). The above value ofEz leads to the expectedAOorder in K2CuF4
[50] (different colors indicate the orbital phases), with θopt;71° in equation (4).When theVA is used, case (a) is still realized at
k 0, while case (b) represents a dressedmagnonwith


k M where orbital states in the shaded cluster are radically different from

those in the ground state, see frozen orbitals in (a).

3
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3. Variational approximation

To capture the response of orbital background to a spin excitationwe invoke the following variational
approximation (VA): significant changes of occupied orbitals with respect to the reference AOorder are
expected at the nearest neighbors of excited spin and at the site of spin excitation itself, see figure 1(b). The largest
change at sublattice L=A,B, l q q+( )L Lopt 1 with l l= = -1A B, occurs at the site of spin excitation itself. For
the neighboring sites we use the lattice symmetry and search for the same optimal orbitals given by angles
l q q- +( )L Lopt 2 and l q q- +( )L Lopt 3 at equivalent neighbors along each cubic axis, a or b.

It is crucial that theVA is performed for each value ofmomentum

k independently.We have evaluated the

matrix elements of theHamiltonian ̂ (3) for a single spin excitation in the thermodynamic limit, and
determined six variational parameters q{ }iL (i=1, 2, 3; L=A,B). In this waywe obtained the renormalized
magnon dispersionwhich replaces equation (8),

w q q q= +
 

 ({ }) ({ } ) ({ } ) ( )I k P k; ; . 9k iL iL iL

By construction the angles {θiL} are real as in equation (4); we have verified that complex coefficients do not lead
to further significant energy lowering.

TheAOorder has a unit cell consisting of two atomswhich defines the reduced Brillouin zone (RBZ). The
magnon dispersion consists then of two branches in theRBZ, the lower one for  p+∣ ∣ ∣ ∣k ka b , i.e. Î


k RBZ,

and the upper one for vectors + Ï
 

( )k Q RBZ, where p p=


( )Q , is the nesting vector. The twomagnon
branches give a gapless dispersion and are determined in two steps to take the full advantage of variational

parameters. First wefind themagnon energies from the lowermagnon band—they depend on q


({ } )I k;A iA ,

q


({ } )I k;B iB and q


({ } )P k;AB iL . The terms q


({ } )I k;L iL stand for the IsingHPboson parts, while q


({ } )P k;AB iL

(with L=a, b) is obtained from theHPboson propagation along the bonds parallel to the a and b axis, from
sublatticeA toB (or vice versa).

The eigenstates of the secondmagnon band are determined in the second step—magnon states which

momenta do not belong to the RBZ. As amagnon states withmomentum Ï

k RBZ is orthogonal to its partner

magnon state withmomentum -
 

( )k Q , then, at this stage, the variational principle has to be applied together
with rigorous orthogonality condition.

4. Simplified variational approximation (SVA) andNA

Assuming that orbital optimization for both sublattices is equivalent, we use the constraint q q qº =i iA iB

(i=1, 2, 3)which defines SVA.Herewe consider the full Brillouin zone and evaluate the energies of a dressed

HPboson q({ })I i and of its propagating part q


({ } )P k;i . The SVA is equivalent to theVAwhen themagnon
happens to be a symmetric linear combination of the twowaves propagating over the two sublattices—this
concerns the G - M direction; otherwise onemay expect that the amplitude of the spinwave is larger in one
sublattice and themagnonwave function differs qualitatively from that obtained for aHeisenberg ferromagnet.
Belowwe show that theVA gives indeed better results than the SVA, and themagnon dressing occurs differently
on both sublattices.

Finally, we verified the predictions of theVAby exact diagonalization employing aNAwith six states per
sublattice: a spin defect with orwithout orbital excitation and four spin-orbital states with spin excitation at the
central site together with an orbital excitation at one of nearest neighbors. The state with excitations within a
shaded cluster depicted infigure 1(b)may be thus expressed in terms of these six states. Here the constraint for
equal orbital angles at two neighbors along the same axis is released. The eigenstates and the spin excitation

energy w k are found separately by exact diagonalization of a 12×12matrix obtained for eachmomentum

k .

5.Magnons forK2CuF4

Taking as an example theK2CuF4 state at = -E J0.8z shown infigure 1(b), onefinds that the orbital
renormalization is large—at the central site with spin excitation it is largelymodified to~ -( )x y2 2 and the
orbitals at the four neighboring sites are also changed. The latter orbitals foundwithin theVA are onlyweakly
changed as these latter sites have three neighbors belonging to the neighbors with undisturbedAOorder [50],
but the one at the spin excitation itself is radically different. For this reasonwe introduce a cutoff and assume that
the orbitals at further neighbors of the excited spin are unchanged. One expects then large dressing of the
magnon, with the corresponding reduction of the effective FM interaction to J♦, particularly in the
neighborhood of theM point. This is confirmed by the results shown infigure 2(a)—themagnon energyωM is

4
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reduced by∼27% from w( )
M
0 . Internal consistency of the theory is confirmed by this reduction being nearly the

same in all threemethods treating spin-orbital coupling: VA, SVA, andNA.
At theX point we recognize the importance of independent optimization of orbitals at the two sublattices—

the energyωX is reduced by∼25% from w( )
X
0 in theVAwhile it stays almost unrenormalized in the SVA, see

figure 2(a). TheNA agrees verywell with the results of theVA except for the points close to theM point along the
- GM path.While theVAmay underestimate somewhat themagnon dressing effect, altogetherwefind indeed

a comparison of theVAwith theNA very encouraging. The renormalization ofmagnon energy increases fast
when the orbital splitting ∣ ∣Ez is reduced, and one finds that themagnon energy reduction is large for

= -E J0.3z , e.g. by∼60%at theM point, see figure 2(b). The agreement between theVA and theNA is
somewhatworse here but remains still in qualitative agreement. Altogether, we suggest that themagnon
softeningmay be very large for spin-orbital systemswith low spin =S 1

2
as inK2CuF4.

6.Magnons for FMplanes of LaMnO3

ForLaMnO3weconsider electrons in egorbitals atEz>0anduse a representative valueof theorbital spitting
[54] = E c J J10 1.04z 1 whichgivesθopt;120°. Spin andorbital excitationsdependon θopt for frozenorbitals [55].
Themagnondispersion ismodifiedwithin theVAor the SVA, seefigure 3(a). In agreementwithour initial intuition,
themagnonenergies predicted fordynamical orbitals soften.Theenergy lowering from w ( )

k
0 to w k is substantial for this

valueofEz—up toabout 45%at theMpoint.Weemphasize that theVAand theNAagree almostperfectly and this
agreement confirmsaposterioriour initial choiceof real orbital phases in theVA.Oneobserves that the energy w k is
somewhat lower than in theNA in theneighborhoodof theMpoint, indicating that theorbitally doubly excited states
become importantwhenat least twoorbital deformations are large enough (such states arenot included in theNA).

We remark that the reported experimental spin exchange constants are thefinal product of processing the
experimental data concerning themagnons energies.A linkbetween themand themeasured energies is establishedby
aparameterized formof thedispersion relation for some conceivedpure-spinmodels definedby a specific interactions
pattern. In caseof LaMnO3, the simplestHeisenbergmodelwithnearest neighbor interaction J1was successfully used
to interpret the experimental data in thepast [29]—it predicts themagnondispersiongivenby equation (8).

Wedecided to follow the same strategy and studiedour calculatedmagnondispersion w k infigure 3(a).We tested
whetherornot onemayfit the calculatedmagnonenergieswith the effectiveHeisenbergmodel andhowmany
exchange interactions areneededusing thedispersion w k discretizedover ameshof (ka, kb) values. It turnedout that to
reproduce themagnonbandwidth J S8 1 thefit requiresnearest neighbor exchange interaction = ´ -J J6.34 101

3 , see

figure3(b). Although the reducedvalueof themagnonbandwidth is then reproduced, the

k -dependenceof w k near

theMpoint is not. It is clear that theHeisenbergmodelwithnearest neighbor exchange is insufficient as theobtained
dispersion w k deviates then fromtheonederived fromtheVA,particularly near theMpoint.Thefitmaybe refinedby
taking into account thenext-nearest and thirdneighbor interactions, J2 and J3, in the effective spinmodel.Onefinds
that = ´ -J J0.25 102

3 is rather small but ´ -J J1.35 103
3 is significant andplays an important role. Bothfits are

shown infigure3(b).

Figure 2.Themagnon energy w  Jk obtained for FM state of K2CuF4 at =J U 0.2H and: (a) = -E J0.80z and (b) = -E J0.30z .
Results are presented for four approximations: frozen orbitals (black line and gray background), theVA (green line), the SVA
(red line), and the 12-stateNA (purple dots). Thehigh symmetry points are: G= ( )0, 0 , p= ( )X , 0 , p p= ( )M , .

5
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Thefitted value of the nearest neighbor exchange spin constant = ´ -J J6.34 101
3 ismuch smaller than the

value = ´à
-J J11.56 10 3 obtained in the frozen orbital approach, actually by ´ - J5.22 10 3 , i.e. by~ àJ0.45 .

This reduction of J1may be rationalized andwas also calculated analytically using our SVA, see the appendix.

Expanding the obtained dispersion w k in the range of small 

k 0, we derived that

+à  ( )J J J4 . 101 3

This explains why:

(i) the overall magnon bandwidth of J S8 1 is here strongly reduced from w ( ) J0.185M
0 to w  J0.101M , but

simultaneously

(ii) the stiffness constant determined by +J J41 3 (by àJ for frozen orbitals) remains unrenormalized [56], see
equation (10).

We emphasize that in this way an outstanding question in the theory how these two effectsmay occur
simultaneously [34] is explained.

Altogether, the loweringofmagnonenergy is quite similar for all themethods although somediscrepanciesoccur.
Weobserve that theSVA ishere again insufficientwhen themagnonmomentumhas large imbalancebetween its
components ka and kb. Indeed, for


k being close to theXpoint, the SVA is able to giveonlyhalf of themagnonsoftening

seen in theVAor in theNA, seefigure 3.Goodagreementbetween theVAand theNA foundhere and inK2CuF4 at
= -E J0.8z justifiesaposteriori the ideaof independentdeterminationof orbital angles for the sublatticesA andB.
The optimal orbital angles q̃iL for amagnon dressed by orbital excitations are changed in LaMnO3 by less

than±30° and remain quite similar to the ground state orbitals with θopt=120°, see figure 4. In general orbital
angles increase for the dressedHPbosons. Thismay be explained because the optimal values of orbital angles q̃iL

follow from the interplay between superexchange interaction and tetragonal crystalfieldEz. Thefirst one favors
θ=90°, while the second one favors θ=180°.When aHPboson is created, the spin exchange effectively
decreases while the value ofEz is not affected.

7. Conclusions

Summarizing,wehave shown that spin-orbital superexchange tunes the orbital angles near local spin excitations and
is responsible for novel dressedmagnonquasiparticles. Themagnon-orbiton coupling is local and reduces nearest
neighbor spin exchange J1 responsible formagnondispersion at theMpoint,while orbitalfluctuations couple
predominantly to spin excitations at neighboring sites and this generates thirdnearest neighbor J3 exchange
couplings.Thus spin-orbital entanglementhas here similar consequences to the exotic phase suggested as a possible

Figure 3.Themagnon energy w  Jk for the FMplane of LaMnO3 at = +E J1.04z obtained: (a) in various approximations, i.e. the
frozen orbital approach, theVA, and the SVA (black, green, and red line), and theNA (purple dots), and (b) in theVA (green line) and
fitted using theHeisenbergmodel with nearest neighbor = ´ -J J6.34 101

3 interaction only (orange line), andwith both the above
nearest neighbor J1 and third nearest neighbor = ´ -J J1.35 103

3 interactions (dark blue line). Gray shading highlights the difference
between the frozen orbital approach and theVA. Parameter: JH/U=0.1725 [10].

6
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ground state of the 2DKugel–Khomskiimodel [8]. There the effective spinmodel derivednear a quantumphase
transition includesnextnearest (J2) and thirdnearest (J3)neighbor exchange interactions and the latter are of crucial
importance to stabilize spinorientation.Here spin-orbital entanglement generates also J3 interactionswhich couple
spins distant by two lattice constants along the cubic axesa andb, and thus themagnondispersion is different from
that givenby theHeisenbergmodelwithnearest neighbor exchange constants derived from frozenorbitalswhen
spin-orbital interactions are disentangled in the ground state.We suggest that such effectswouldbeweakerbut still
measurable in 3DorderedphaseswithFMplanes, as for instance inLaMnO3, and it is very challenging todetect them.

In the electronicmodel considered here spin-orbital degrees of freedom are entangled and thus respond
jointly, giving renormalized spin excitations. However, strong coupling between orbitals and lattice distortions
caused by the Jahn–Teller effect will reduce themagnon-orbiton entanglement and thus the renormalization of
magnon dispersion reported herewill decrease.We suggest that only future experiments could establish
importance of spin-orbital entanglement in excited states.

We suggest that similar analysis of themagnon dispersion could be performed using the variational
approach for doped FMmanganites with statistically averaged interactions between initial S=2 spins atMn3+

ions and S=3/2 spins atMn4+ ions [57].We expect that it would reproduce the reduction themagnon energies
at the Brillouin zone boundary obtained in the diagrammatic approach [35]. Finally, we remark that the present
variationalmethod could also be used to investigatemagnon dispersion in the charge, orbital, and spin ordered
phase in La1/2Sr3/2MnO4 [58].
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Appendix. Analytic estimation of the nearest neighbor exchange J1

Creation ofmagnons characterized by =

k 0 (beingGoldstonemodes) does not entail any changes in the orbital

background for a spin-orbital system.Whenmagnons characterized by finite

k 0 are created, the coupled

orbitalsmay be slightlymodified. As a result, I and


( )P k terms deviate from I(0) and


( )( )P k0 . To highlight the
minute changes due to spin-orbital entanglement, we introduce a vector x consisting of differences in variational
parameters with respect to their values in the ground state, and expand I andP in terms of x treated as a small
parameter:

Figure 4.Theorbital changes at nearest (solid), next-nearest (dashed), and third nearest neighbor (dotted–dashed lines)of spin excitation
inLaMnO3 found in theVA (green), the SVA (red), and theNA (purple lines) forHPbosons at sublattice: (a)A and (b)B. In (c)orbital
states (4) are shown (different colors stand for different orbital phases) for: θopt=120° (middle), θiL=θopt−30° (bottom), and
θiL=θopt+30° (top). Parameters as infigure 3.
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⎝

⎞
⎠( ) ( ) ( ) ( )( )P k T P kx x w x x Wx; 4 4
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In the above formulae:

(i) in a considered spin-orbital model (3), the


( )P k term is factorized into the coefficient T4 and a
k -dependent term g k describing the dispersion;

(ii) for the sake of clarity the following symbols were introduced: u andU for the gradient and the Hessian of I
(x), andw andW for the gradient and theHessian ofT(x), all at x=0.

The above expansions were truncated at quadratic terms, so that the corresponding variational function for a
magnon energy has a quadratic form

w w g g= + + + + +

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )I P kx x x x u w x x U W x; 4

1

2
4 , 13k k

T T T
k k

0

thatmay beminimized to obtain

w w g g g- + + +-  ( )( ) ( ) ( )( ) u w U W u w
1

2
4 4 4 . 14k k

T T
k k k

0 1

Note that as long as I(x) andT(x)may be expressed analytically, so dou,U,w,W, and,finally, w k aswell. Owing
to this, the above formula offers analytically the approximate results without involving any further numerical
minimization (as opposed to the strategy used in themain part of the article).

If J1 is perceived as a parameter in a generic formof a dispersion relation w g= - + ¼ ( )J S4 1k k1 , where all
other terms thatmay be introduced for better accounting of the functional dependence such asµ ( )J kcos 2 a3 are
notwritten explicitly, then its approximate valuemay be extracted directly from equation (14) as a coefficient in
front of g- S4 k:

= + -à
- - -⎜ ⎟⎛

⎝
⎞
⎠ ( )J J

S
u U w u U WU u

1 1

2
, 15T T

1
app 1 1 1

where the second term captures the deviation form the frozen orbital description.
In order to rationalize the reported value of J1 for LaMnO3we used equation (15) togetherwith the SVA

parametrization. The obtained value of the correction is equal to = - ´ -J J4.90 101
app 3 , in fairly good

agreementwith the value- ´ - J5.22 10 3 resulting from the fit. To avoid lengthy formulaewe do not present
here a similar approach to determine J2 and J3, and restrict this analytic consideration to the SVA.
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