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Abstract. We study the binding energy of the three-nucleon system in relativistic models that use two different
relativistic treatments of the potential that are phase equivalent to realistic NN interactions. One is based on a
unitary scale transformation that relates the non-relativistic center-of-mass Hamiltonian to the relativistic mass
(rest energy) operator and the other uses a non-linear equation that relates the interaction in the relativistic mass
operator to the non-relativistic interaction. In both cases Lorentz-boosted interactions are used in the relativistic
Faddeev equation to solve for the three-nucleon binding energy. Using the same realistic NN potentials as input,
the solution of the relativistic three-nucleon Faddeev equation for3H shows slightly less binding energy than the
corresponding nonrelativistic result. The effect of the Wigner spin rotation on the binding is very small.

1 Introduction

For up to 300 MeV proton energy, proton-deuteron (pd)
scattering measurements have been analyzed with rigor-
ous three-nucleon (3N) Faddeev calculations [1] based on
the CD-Bonn potential [2] and the Tucson-Melbourne 3N
force (3NF) [3]. Comparing theoretical calculations to the
recent precise measurements of pd scattering data [4–8]
indicates that theoretical predictions based on two-nucleon
forces alone are not sufficient to describe the data above
about 100 MeV. The minimum of the differential cross
section has been discussed as the first signal of the 3NF
effects, which are already seen below 100 MeV [9–11].
However, presently available 3NF’s only partially improve
the description of cross section data and spin observables.
Since most of the cited calculations are based on the non-
relativistic formulation of the Faddeev equations [12], one
needs to question if in the intermediate energy regime a
Poincaré invariant formulation is required.

There are different formulations of the relativistic few-
body problem. Our calculations are based on an exact re-
alization of the symmetry of the Poincaré group in three-
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nucleon quantum mechanics [13]. The mass operator (rest
energy operator) consists of the relativistic kinetic energy
together with two- and three-body interactions, including
their boost corrections [14]. Our approach differs from a
manifestly covariant scheme linked to a field theoretical
approach [15].

The first attempt in solving the relativistic Faddeev
equation for the three-nucleon bound state based on the
second approach has been carried out in [16], resulting in
a decrease of the binding energy compared to the nonrela-
tivistic result. On the other hand, similar calculations based
on the field theory approach [15] increase it. These contra-
dictory results require more investigation.

Because the result may depend on the transformation
of the nonrelativistic potential to a relativistic potential,
a momentum scale transformation [17] (MST) was intro-
duced without any additional parameters. Of course, this
scale transformation method is not equivalent to the con-
struction of a relativistic potential from a field theory. How-
ever, the scale transformation is a very useful and simple
parameterization of a relativistic NN potential, which pre-
serves the NN phase shifts exactly. Using a s-wave approx-
imation we solved the relativistic Faddeev equation with
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Lorentz boost of the scale transformed potential [17,18]
and it agreed with the previous result [16].

Recently, going back to the idea of the Coester-Pieper-
Serduke scheme (CPS), [19] we succeeded to obtain a rel-
ativistic potential numerically, and used the same method
to directly construct the Lorentz boosted potential.

In the following we want to demonstrate some recent
results: in Section 2 we introduce the relativistic nucleon-
nucleon potentials constructed by the MST and CPS meth-
ods, in Section 3 the construction of the boosted potentials
is discussed, in Section 4 we give numerical results for the
triton binding energy based on the Poincaré invariant Fad-
deev equation and in Section 5 we summarize.

2 The Relativistic Potential

As mentioned in the introduction, our relativistic treatment
is based on the Bakamjian-Thomas framework, where the
rest Hamiltonian for the three-body system consists of rel-
ativistic kinetic energies and two- and three-body interac-
tions, including their boost corrections, which are dictated
by the Poincaré algebra. The boost techniques will be dis-
cussed in the next section 3. For two-body systems real-
istic interactions are designed to fit scattering data. Rela-
tivistic two-body calculations must fit the same data, which
means that at the two-body level the relativistic and non-
relativistic models must be phase equivalent as a function
of either the center-of-momentum momentum or the en-
ergy. Differences in relativistic and non-relativistic calcu-
lations then appear first in the three-body calculations.

The usual nonrelativistic Lippmann-Schwinger equa-
tion (LS) with a potentialv is given in momentum space
as

t(p, p′; E) = v(p, p′) +
∫

v(p, p′′)t(p′′, p′; E)

E − p′′2/m + iǫ
dp′′ , (1)

wheret andm are the t-matrix and the nucleon mass, re-
spectively.

On the other hand, there are relations between the c.m.
kinetic energyE and the relative momentumk for the rel-
ativistic and nonrelativistic formalism, namely

Er ≡ 2
√

m2 + kr
2 − 2m,

Enr ≡
knr

2

m
. (2)

Here the subscriptsr andnr denote relativistic and nonrel-
ativistic relations.

Our relativistic potentialvr appears in the relativistic
Lippmann Schwinger equation as

tr(p, p′; E) = vr(p, p′)

+

∫

vr(p, p′′)tr(p′′, p′; E)

2
√

m2 + k2 − 2
√

m2 + p′′2 + iǫ
dp′′ , (3)

wheretr is a relativistic t-matrix. Note that in Eqs. (1) and
(3) there are no subscripts (r ornr) for E andk (orp) before
entering the next subsection. The energiesE in Eq.(1) and
in Eq. (3) are not necessarily equal. The momentak andp
in Eq.(1) and in Eq. (3) are not necessarily equal either.

2.1 The Momentum Scale Transformation

In order to build the potentialv one may identify the energy
E of Eq. (1) just as a c.m. energyEex which is measured in
an experiment. One may interpret [17]:

E
!
=Eex

!
=Er

!
=Enr. (4)

For this choice,kr , knr.
Eq. (1) is rewritten as

t(pnr , p′nr; E)

= v(pnr, p′nr) +
∫

v(pnr, p′′nr)t(p
′′
nr, p

′′
nr; E)

k′′nr
2/m − p′nr

2/m + iǫ
dp′′nr

= v(pnr, p′nr)

+

∫

v(pnr, p′′nr)t(p
′′
nr, p

′
nr; E)

2
√

m2 + k2
r − 2

√

m2 + p′′r
2
+ iǫ

dp′′nr

= v(pnr, p′nr) +
∫

v(pnr, p′′nr)t(p
′′
nr, p

′
nr; E)

2
√

m2 + k2
r − 2

√

m2 + p′′r
2
+ iǫ

×J(p′′r )dp′′r , (5)

whereJ is the Jacobian. Under the interpretation of Eq. (4)
the nonrelativistic momentumknr is a function ofkr,

knr = knr(kr) =
√

2m

√

√

m2 + k2
r − m. (6)

One defines

vr(pr, p′r) ≡
1

h(pnr)
v(pnr, p′nr)

1
h(p′nr)

,

tr(pr, p′r; E) ≡ 1
h(pnr)

t(pnr , p′nr; E)
1

h(p′nr)
, (7)

with

h(pnr) ≡

√

(1+
p2

nr

2m2
)

√

1+
k2

nr

4m2
≡ 1
√

J(pr)
. (8)

The amplitudestr and vr are related by solving the rela-
tivistic LS equation:

tr(pr, p′r; E) = vr(pr, p′r)

+

∫

vr(pr, p′′r )tr(p′′r , p
′
r; E)

2
√

m2 + k2
r − 2

√

m2 + p′′r
2
+ iǫ

dp′′r . (9)

Therefore, one could identify them as relativistic ampli-
tudes. We call Eqs. (6-8) momentum scale transformation
(MST) [17].

2.2 Coester-Pieper-Serduke Scheme

There is another way for the identification. Instead of Eq. (4)
one employs the following relation among momenta:

k
!
=kex

!
=knr

!
=kr, (10)
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wherekex is the experimental momentum. In this case it is
natural to add an interaction tok2/m, so that the square of
the two-body invariant mass operator becomes

M2
= 4m2

+ 4m(
p2

m
+ v̂). (11)

Because this is a function of the non-relativistic Hamilto-
nian, it has the same eigenfunctions as the non-relativistic
Hamiltonian as a function of the relative momentum,k.
Since the phase-shifts can be extracted from the scatter-
ing wave functions, this mass operator has the same phases
shifts at the non-relativistic Hamiltonian as function of rel-
ative momentum.

The non-relativistic Lippmann-Schwingerequation still
holds, Eq. (1), but in the relativistic case the interaction, the
energy, and the transition operator that appear in this equa-
tion have a different interpretations than compared to the
non-relativistic case.
The relation

M2
= (M0 + v̂r)

2
= M2

0 + 4mv̂ (12)

leads to the identity

{M0, v̂r} + v̂2r = 4mvnr , (13)

which can be expressed in terms of the relative momentum
operator̂k as

4mv̂ = 2
√

m2 + k̂2v̂r+2
√

m2 + k̂2v̂r+(vr)
2
= 4mvnr . (14)

Equation (14) can be expressed as the momentum space
integral equation

4mv(p, p′) = (2
√

m2 + p2 + 2
√

m2 + p′2)vr(p, p′)

+

∫

vr(p, p′′)vr(p′′, p′)dp′′. (15)

This is a nonlinear integral equation forvr givenv and can
be solved by iteration [20]. The solution ofvr is then used
in Eq. (3). We call this methods Coester-Pieper-Serduke
scheme (CPS).

2.3 Relation to Realistic Potentials

The relativistic potentials discussed here were not built di-
rectly from a relativistic Lagrangian. The nucleon-nucleon
potentials were generated by requiring that they predict the
experimental phase shifts. Since realistic non-relativistic
potentials are constructed to fit experimental phase shifts,
relativistic interactions can be constructed by requiring that
they lead to the same phase shifts as the non-relativistic po-
tentials as a function of center of momentum energy (MST)
or center of momentum momentum (CPS). The MST po-
tentials also lead to the same deuteron binding as the non-
relativistic calculation while the (CPS) potentials produce
the same deuteron wave numbers as the non-relativistic
calculation. The quality ofvr obtained by each scheme was
discussed in [21].

There are some realistic potentials, e.g. the Argonne
V18 potential [22], which are suitable for the MST scheme
because of the ansatz of Eq. (4). The CD Bonn potential
[2] and the Nijmegen potential [23] are suitable to CPS
because of the ansatz of Eq. (10) (See Fig.1).

The two approaches are not equivalent, but the differ-
ences at low energies are primarily due to off-shell effects.

Relativistic quantum
mechanical world

k    =k
rel nonrel

!

Bonn potential,
Nijmegen potential

quantum 
mechanical world

Nonrelativistic

E   =E
rel nonrel

Nonrelativistic

quantum 

mechanical world

Argonne potential

!

(CPS)

(MST)

Fig. 1. Venn diagram of worlds.

3 The Boosted Potential

As shown in Section 2, schemes generating relativistic po-
tential from nonrelativistic interactions are rather artificial.
Compared to these schemes, the boost correction within
the Bakamjian-Thomas framework is natural and unique.

Cluster properties require that the energy is additive.
Because of the non-linear relations between the mass and
energy in special relativity, the additivity of energies in the
rest frame implies a non-linear relation between the two-
body interactions in the two and three-body mass operators
[13]. We call the two-body interaction in the three-body
mass operator theboosted potential vq:

v̂q ≡
√

(2
√

m2 + k̂2 + v̂r)2 + q2

−
√

4(m2 + k̂2) + q2 (16)

where the spectator momentumq in the 3-body center of
mass is simultaneously the negative total momentum of the
pair. In the 3-body system the momentumq is operator but
it behaves as c-number in the subsystem.

Using Eq. (14) this can be rewritten as potential in the
CPS scheme,

v̂q =

√

4(m2 + k̂2 + mv̂) + q2 −
√

4(m2 + k̂2) + q2. (17)

Now, Eq. (17) can be rewritten as

4mv̂ = 2
√

m2 + k̂2 + q2/4 v̂q + 2v̂q

√

m2 + k̂2 + q2/4

+ (v̂q)2
. (18)
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This has a similar structure as Eq. (14). We have a repre-
sentation in momentum space as

4mv(p, p′) =

(2
√

m2 + p2 + q2/4+ 2
√

m2 + p′2 + q2/4)vq(p, p′)

+

∫

vq(p, p′′)vq(p′′, p′)dp′′. (19)

This is a nonlinear integral equation forvq in terms ofv.
Again, Eq.(19) is solved by the same iterative technique
used in [20].

We would like to emphasize again that Eq. (18) is a
natural extension from Eq. (14). However, Eq. (18) is not
only available for the CPS scheme. In [18] the MST po-
tential was boosted by a different way related to a Møller
operator. The boost correction to the MST potential can
also be calculated by this way, namely, usingvr in Eq. (7)
of MST one gets a newv through Eq. (14).

4 Triton Binding Energy

The relativistic bound-state Faddeev equation was solved
using the boosted t-matrixtr of Eq. (3). In Tables 1 and 2
the results for the triton binding energy using several po-
tentials calculated based on the MST and CPS methods are
displayed. The precision of the partial wave decomposi-
tion belongs to 5ch (S-wave Approximation). In the case of
MST (Table 1) the results [18] show that the triton binding
energies obtained from the relativistic calculation are about
400 keV smaller compared to the ones calculated nonrela-
tivistically. As mentioned in subsection 2.3, the Reid Soft
Core potential and Argonne V18 potential can be reason-
ably applied in the MST scheme, but the other potential are
forced to be substituted into MST method.

In the case of the CPS scheme, Table 2, the differences
between the relativistic and nonrelativistic calculations are
about 100 keV. The CDBonn and the Nijmgen potentials
are naturally applied to the CPS scheme. This value is sig-
nificantly smaller than a MSC result [18]. The reason for
this overestimation of a relativistic effect on the binding
energy can be attributed to a different construction of the
relativistic off-shell t-matrixtr. 1

In Table 3 we demonstrate the convergence for partial
wave decomposition using CDBonn potential and the CPS
scheme. In order to obtain accuracy beyond 3 digits, the
total spin j in the subsystem of nucleon pair, needs to be
j=4 (34ch).

We also included the Wigner spin rotation as outlined
in [26]. Thereby the Balian-Brezin method[27] in handling
the permutations is quite useful. In Table 4 the triton bind-
ing energy is shown allowing charge independence break-
ing (CIB) [28] and Wigner spin rotations. Wigner spin ro-
tation effects reduce the binding energy by only about 2 keV.

1 In the former Proceedings [25] we would have thought that
MST has a sort of defect because we need a new potentialv in
Eq. (14).

Table 1. The relativistic (rel.) and nonrelativistic (nonrel) triton
binding energies in MeV obtained by MST scheme from different
nonrelativistic potentials. The quantity (diff.) indicates the differ-
ence between the rel. and nonrel. calculations

potential rel. (MST) nonrel. diff.

RSC [24] -6.59 -7.02 0.43
AV18 [22] -7.23 -7.66 0.43
CD-Bonn [2] -7.98 -8.33 0.35
Nijmegen II[23] -7.22 -7.65 0.43
Nijmegen I [23] -7.71 -8.00 0.29
Nijmegen93 [23] -7.46 -7.76 0.30

Table 2. The relativistic (rel.) and nonrelativistic (nonrel) triton
binding energies in MeV obtained by CPS scheme from different
nonrelativistic potentials. The quantity (diff.) indicates the differ-
ence between the rel. and nonrel. calculations

potential rel. (CPS) nonrel. diff.

RSC [24] -6.97 -7.02 0.05
AV18 [22] -7.59 -7.66 0.07
CD-Bonn [2] -8.22 -8.33 0.11
Nijmegen II [23] -7.58 -7.65 0.07
Nijmegen I [23] -7.90 -8.00 0.10
Nijmegen93 [23] -7.68 -7.76 0.08

Table 3. The theoretical predictions of the trition binding ener-
gies resulting from the solutions of the nonrelativistic (first row)
and relativistic (second row) Faddeev equations as function of the
number of partial waves (ch) taken into account. The note of (S)
means S-wave approximation as Tables 1 and 2. The numbers
inside of braket are the maximum of the total spin in the subsys-
tem. The last line indicates the absolute difference between the
nonrelativistic and relativistic result. In the calculations only the
np force of the CD-Bonn potential was used. Unit is in MeV.

5ch (S) 18ch (2) 26ch (3) 34ch (4)

nonrel. -8.331 -8.220 -8.241 -8.247
rel. -8.219 -8.123 -8.143 -8.147
diff. 0.112 0.107 0.098 0.100

Table 4. The theoretical predictions for the relativistic and non-
relativistic triton binding energies in MeV. All numbers are 34
channels results. The second column is the same as the last col-
umn in Table 3. The results in the third column take charge de-
pendence[28] into account. In addition the result of the fourth
column contains Wigner spin rotation effects.

np only np+nn Wigner rot. diff.

nonrel. -8.247 -8.005 - -
rel. -8.147 -7.916 -7.914 -0.002
diff. 0.100 0.089 - -
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5 Summary

A phase-shift equivalent 2N potentialvr in the relativis-
tic 2N Schrödinger equation is related to the potentialv
in the nonrelativistic Schrödinger equation by the momen-
tum scale transformation scheme and the Coester-Pieper-
Serduke scheme. The boosted potentialvq is related tovr by
Eq.(16). With these potentials we generate the relativistic
fully-off-shell t-matrixtq, which enters into the relativis-
tic Faddeev equation. We solve the relativistic bound state
Faddeev equation and compare the binding energy for the
triton with the one obtained from a nonrelativistic calcula-
tion with the same input interaction.

In the case of the CPS scheme we find that the differ-
ence between the two calculations is only about 90 keV
including CIB, where the relativistic calculation gives a
slightly reduced binding. Taking Wigner spin rotations into
account in the relativistic calculation, the the binding en-
ergy is reduced by a very small amount, 2 keV, indicating
that Wigner rotations of the spin have essentially no effect
on the predicted value of the binding energy. Applications
to the 3-body continuum are in progress. Recently [26] the
formulation lined out above has been used to study the low
energy Ay puzzle in neutron-deuteron scattering. In the in-
termediate energy regime the formulation has been applied
to exclusive proton-deuteron scattering cross sections at
508 MeV [29,30] based on a formulation of the Faddeev
equations which does not employ a partial wave decompo-
sition [31]. The approach can also be extended and applied
to electromagnetic processes[32,33].

Acknowledgments

This work was partially supported by the 2008-2011 polish
science funds as a research project No. N N202 077435. It
was also partially supported by the Helmholtz Association
through funds provided to the virtual institute ”Spin and
strong QCD”(VH-VI-231). The numerical calculations
were performed on the IBM Regatta p690+ of the NIC in
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12. W. Glöckleet al., Phys. Rep.274, (1996) 107.
13. F. Coester, Helv. Phys. Acta38, (1967) 7.

14. B. Bakamjian, L. H. Thomas, Phys. Rev.92, (1953)
1300.

15. A. Stadler, F. Gross, and M. Frank Phys. Rev. C56,
(1997) 2396.
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