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Abstract. We study the binding energy of the three-nucleon system in relativistic models that uséfesendi
relativistic treatments of the potential that are phase equivalent to realistic NN interactions. One is based on a
unitary scale transformation that relates the non-relativistic center-of-mass Hamiltonian to the relativistic mass
(rest energy) operator and the other uses a non-linear equation that relates the interaction in the relativistic mass
operator to the non-relativistic interaction. In both cases Lorentz-boosted interactions are used in the relativistic
Faddeev equation to solve for the three-nucleon binding energy. Using the same realistic NN potentials as input,
the solution of the relativistic three-nucleon Faddeev equatiofHahows slightly less binding energy than the
corresponding nonrelativistic result. Théeet of the Wigner spin rotation on the binding is very small.

1 Introduction nucleon quantum mechanics [13]. The mass operator (rest
energy operator) consists of the relativistic kinetic energy
For up to 300 MeV proton energy, proton-deuteron (pd) together with two- and three-body interactions, including
scattering measurements have been analyzed with rigortheir boost corrections [14]. Our approaclifeiis from a
ous three-nucleon (3N) Faddeev calculations [1] based onmanifestly covariant scheme linked to a field theoretical
the CD-Bonn potential [2] and the Tucson-Melbourne 3N approach [15].
force (3NF).[3]' Comparing theoretical calcul_ations to the The first attempt in solving the relativistic Faddeev
recent precise measurements of pd scattering data [4—8} ation for the three-nucleon bound state based on the
indicates that theoretical predictions based on two-nucleonsecond approach has been carried out in [16], resulting in
forces alone are not ficient to describe the data above , yeocrease of the binding energy compared to the nonrela-
about 100 MeV. The minimum of the féérential Cross iqtic result. On the other hand, similar calculations based
section has been discussed as the first signal of the 3NFy, 1 fielg theory approach [15] increase it. These contra-
effects, which are already seen below 100 MeV [9-11]. dictory results require more investigation.
However, presently available 3NF’s only partially improve .
the description of cross section data and spin observables, , Because the result may depend on the transformation

Since most of the cited calculations are based on the non®f the nonrelativistic potential to a relativistic potential,
relativistic formulation of the Faddeev equations [12], one & Momentum scale transformation [17] (MST) was intro-

needs to question if in the intermediate energy regime aduced without any additional parameters. Of course, this
Poincaré invariant formulation is required. scale transformation method is not equivalent to the con-
There are dferent formulations of the relativistic few-  Struction of arelativistic potential from a field theory. How-

body problem. Our calculations are based on an exact re-€Ver. the scale transformation is a very useful and simple
alization of the symmetry of the Poincaré group in three- Parameterization of a relativistic NN potential, which pre-
serves the NN phase shifts exactly. Using a s-wave approx-
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Lorentz boost of the scale transformed potential [17,18] 2.1 The Momentum Scale Transformation
and it agreed with the previous result [16].

Recently, going back to the idea of the Coester-Pieper-In order to build the potentialone may identify the energy
Serduke scheme (CPS), [19] we succeeded to obtain a relE of Eq. (1) just as a c.m. enerdas which is measured in
ativistic potential numerically, and used the same methodan experiment. One may interpret [17]:
to directly construct the Lorentz boosted potential.

In the following we want to demonstrate some recent EZEq=E,=E,. (4)
results: in Section 2 we introduce the relativistic nucleon-
nucleon potentials constructed by the MST and CPS meth-For this choicek, # kq.
ods, in Section 3 the construction of the boosted potentials  Eq. (1) is rewritten as
is discussed, in Section 4 we give numerical results for the
triton binding energy based on the Poincaré invariant Fad- t(Pnr, Prrs E)
deev equation and in Section 5 we summarize. ,

= v(Prr, Por) +

= v(Prr> Prr)
+ f U(pnr, pr"u’r)t(p;{r’ pﬂr; E)

As mentioned in the introduction, our relativistic treatment 2+ k2 -2 I + pr2 +ie
is based on the Bakamjian-Thomas framework, where the o(Prr s PLUPL, Pl E)
= o(Pre. Piy) + f e

rest Hamiltonian for the three-body system consists of rel-
2y M2+ K2 -2\ /m? + py? +ie
®)

v(Prrs PA)t(Phrs P E) |,
2 . d nr
k2 /m— pp2/m+ie

2 The Relativistic Potential

dppy

ativistic kinetic energies and two- and three-body interac-

tions, including their boost corrections, which are dictated xJ(p!)dp”’
by the Poincaré algebra. The boost techniques will be dis- re
cussed in the next section 3. For two-body systems real-yhereJ is the Jacobian. Under the interpretation of Eq. (4)
istic interactions are designed to fit scattering data. Rela-the nonrelativistic momentutg, is a function ofk;,

tivistic two-body calculations must fit the same data, which

means that at the two-body level the relativistic and non-

relativistic models must be phase equivalent as a function kar = ke (k) = V2m4/ /M2 + K2 —m. (6)

of either the center-of-momentum momentum or the en-

ergy. Differences in relativistic and non-relativistic calcu- QOne defines

lations then appear first in the three-body calculations.

bl

The usual nonrelativistic Lippmann-Schwinger equa- o (pr, pl) = 1 o(Por ) 1
tion (LS) with a potentiab is given in momentum space e R h(pnr% Y h(pr,)” .
as
t(Pr. pr; E) = ———t(Por. Prs ) = (7)
) , o(p, p)t(p”.p;E) . ,, h(pnr) h(pf)
(.0 B) = ofp.p) + [LRENCLREE) gy "
E-p’s/m+ie with
wheret andm are the t-matrix and the nucleon mass, re-
spectively. P2, k2, 1
On the other hand, there are relations between the c.m.  h(pnr) = \[(1+ ﬁ) 1+ = Sy (8)
kinetic energyE and the relative momentukifor the rel- vI(pr)

ativistic and nonrelativistic formalism, namely The amplitudes, andu, are related by solving the rela-

tivistic LS equation:
E = 2+/m2 + k2 -2m g

T @ tr(pr. P73 E) = vr(pr. py)
e m ’ + Ur(pr, pl"’)tr(pll‘l’ pll" E) dp// (9)
Co
Here the subscriptsandnr denote relativistic and nonrel- 2\ M+ k2 -2 /M2 + pr2+ie

ativistic relations.
~ Our relativistic potentiab, appears in the relativistic  Therefore, one could identify them as relativistic ampli-
Lippmann Schwinger equation as tudes. We call Egs. (6-8) momentum scale transformation
t(p,p’;E) = Ur(p’,’ p’) o (MST) [17].
+f or(p, ")t (p”, p'; E) "

dp” . (3
2V + K2 = 24/mP + p2 + e 2.2 Coester-Pieper-Serduke Scheme
wheret; is a relativistic t-matrix. Note that in Egs. (1) and ) ) o
(3) there are no Subscrip“s((r nr) for E andk (Or p) before Thereis anotherway for the |dent|flcat|0n. Instead of Eq (4)
entering the next subsection. The enerdids Eq.(1) and ~ ©ne employs the following relation among momenta:
in Eq. (3) are not necessarily equal. The momérdadp o
in Eq.(1) and in Eq. (3) are not necessarily equal either. k=Kex=Knr=k:, (20)
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wherekey, is the experimental momentum. In this case it is There are some realistic potentials, e.g. the Argonne
natural to add an interaction k8/m, so that the square of V18 potential [22], which are suitable for the MST scheme
the two-body invariant mass operator becomes because of the ansatz of Eq. (4). The CD Bonn potential
[2] and the Nijmegen potential [23] are suitable to CPS
because of the ansatz of Eq. (10) (See Fig.1).

The two approaches are not equivalent, but theedi
ences at low energies are primarily due fbshell efects.

p2
M? = 4n? + 4m(E + D). (11)

Because this is a function of the non-relativistic Hamilto-

nian, it has the same eigenfunctions as the non-relativistic

Hamiltonian as a function of the relative momentum, 7 Q-

Since the phase-shifts can be extracted from the scatter-

ing wave functions, this mass operator has the same phases

shifts at the non-relativistic Hamiltonian as function of rel- ’

ative momentum. o
The non-relativistic Lippmann-Schwinger equation still d

holds, Eqg. (1), but in the relativistic case the interaction, the

energy, and the transition operator that appear in this equa-

Relativistic quantum
mechanical world

Nonrelativistic
quantum
mechanical world

(MST)

Argonne potential

Nonrelativistic

i i 1 quantum \ T———T e
tion haIV(tE. a ?ferent interpretations than compared to the o ehanical world
non-relativistic case. .
. CPS
The relation (CPS) R4
Bonn potential, ’
M2 — (MO + 17r)2 — MS + 4rna (12) Nijmegen potential Vit

I to the identit
eads to the identity Fig. 1. Venn diagram of worlds.

{Mo, B¢} + 07 = 4mupy (13)
which can be expressed in terms of the relative momentum

operatolk as )
3 The Boosted Potential

N k27 K25 2 _
4 = 2P + K20, + 2 Ve + K26, + () = dmoyy . (14) As shown in Section 2, schemes generating relativistic po-

Equation (14) can be expressed as the momentum spactential from nonrelativistic interactions are rather artificial.
integral equation Compared to these schemes, the boost correction within

the Bakamjian-Thomas framework is natural and unique.

, ’ , Cluster properties require that the energy is additive.
4mu(p.p) = (2 \/mz PP 2\/”‘2 + p2)ur(p, ) Because of the non-linear relations between the mass and
+ [ woep, p")ur(p”, p)dp”. (15) energy in special relativity, the additivity of energies in the

rest frame implies a non-linear relation between the two-
body interactions in the two and three-body mass operators

This is a nonlinear integral equation fgrgivenvand can 131" \we call the two-body interaction in the three-body
be solved by iteration [20]. The solution afis thenused [, 5cq operator thisoosted potential vg:

in Eq. (3). We call this methods Coester-Pieper-Serduke
scheme (CPS).

0 = \/(2\/m2+R2+ﬁr)2+q2

2.3 Relation to Realistic Potentials - /4(mz +k2) + 2 (16)

rectly from a relativistic Lagrangian. The nucleon-nucleon mass is simultaneously the negative total momentum of the
potentials were generated by requiring that they predict thepajr. In the 3-body system the momentgris operator but
experimental phase shifts. Since realistic non-relativistic jt pehaves as c-number in the subsystem.

relativistic interactions can be constructed by requiring that cps scheme,

they lead to the same phase shifts as the non-relativistic po-

tentials as a function of center of momentum energy (MST) . e N o

or center of momentum momentum (CPS). The gIJ\/)I/S(T po? Y = \/4(mz +ke+mh) + ¢ - \/4(mz +k)+ e (17)
tentials also lead to the same deuteron binding as the non
relativistic calculation while the (CPS) potentials produce
the same deuteron wave numbers as the non-relativistic ~ = . ~ =
calculation. The quality of, obtained by each scheme was ~ 4M0 = 2/MP + K2 + 0?/4 G + 20q /NP + K2 + 02/4
discussed in [21]. + (bg)? . (18)

Now, Eqg. (17) can be rewritten as
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This has a similar structure as Eq. (14). We have a repre-Table 1. The relativistic (rel.) and nonrelativistic (nonrel) triton

sentation in momentum space as binding energies in MeV obtained by MST scheme froffedent
nonrelativistic potentials. The quantity tl) indicates the dfer-
dmw(p, p’) = ence between the rel. and nonrel. calculations
(2 Ime + P? + 02/4 + 24 Im2 + P2+ o?/4)vq(p, p’) potential rel. (MST) nonrel. di
1 "N AR RSC [24] -6.59 -7.02 0.43
. 1
" IUQ(p’ P™)eq(p”, P)dp (19) AV18 [22] 723 766 043
CD-Bonn [2] -7.98 -8.33 0.35
This is a nonlinear integral equation fay in terms ofw. Nijmegen 11[23] -7.22 -7.65 043
Again, Eq.(19) is solved by the same iterative technique Nijmegen I [23] -7.71 -8.00 0.29
used in [20]. Nijmegen93 [23] -7.46 -7.76  0.30

We would like to emphasize again that Eqg. (18) is a

natural e_xten5|0n from Eq. (14). However, Eq. (18) is not Table 2. The relativistic (rel.) and nonrelativistic (nonrel) triton
only available for the CPS scheme. In [18] the MST po- ynging energies in MeV obtained by CPS scheme froffedznt
tential was boosted by afiitrent way related to a Maller  ponrelativistic potentials. The quantity ) indicates the dier-
operator. The boost correction to the MST potential can gnce petween the rel. and nonrel. calculations

also be calculated by this way, namely, usingn Eq. (7)

of MST one gets a newthrough Eq. (14). potential rel. (CPS) nonrel. i
RSC [24] -6.97 -7.02 0.05
AV18[22] -7.59 -7.66 0.07
- c CD-Bonn [2] -8.22 -8.33  0.11
4 Triton Binding Energy Nijmegen Il [23] -7.58 -7.65 0.07
Nijmegen | [23] -7.90 -8.00 0.10
The relativistic bound-state Faddeev equation was solved Nijmegen93 [23] -7.68 -7.76  0.08

using the boosted t-matrix of Eq. (3). In Tables 1 and 2
the results for the triton binding energy using several po- . - » .
. able 3. The theoretical predictions of the trition binding ener-
geigtlg Sgglijrléte?gc?:%?] Oor} tS]eeMili:F \C,ivng’eS drgsgr]‘r?ds;il—r%—ies resulting from the solutions of the nonrelativistic (first row)
tior?bglon.gs to S%h (S-wave Apprgximation) In the cage of and relativistic (second row) Faddeev equations as function of the

. T number of partial waves (ch) taken into account. The note of (S)
MST (.Table 1). the results [18] shqw_that the tr_lton binding means S-wave approximation as Tables 1 and 2. The numbers
energies obtained from the relativistic calculation are aboutjside of braket are the maximum of the total spin in the subsys-

400 keV smaller compared to the ones calculated nonrelayem, The last line indicates the absolutéfetience between the
tivistically. As mentioned in subsection 2.3, the Reid Soft nonrelativistic and relativistic result. In the calculations only the
Core potential and Argonne V18 potential can be reason-np force of the CD-Bonn potential was used. Unit is in MeV.
ably applied in the MST scheme, but the other potential are
forced to be substituted into MST method. 5ch(S) 18ch(2) 26¢ch(3) 34ch(4)

In the case of the CPS scheme, Table 2, tifiedinces nonrel.  -8.331  -8.220 8.241 8.047
between the relativistic and nonrelativistic calculations are 8219 -8123  -8.143  -8.147
about 100 keV. The CDBonn and the Nijmgen potentials ;g 0.112 0.107 0.098 0.100
are naturally applied to the CPS scheme. This value is sig
nificantly smaller than a MSC result [18]. The reason for
this overestimation of a relativistic efit on the binding ~ Table 4. The theoretical predictions for the relativistic and non-
energy can be attributed to afféirent construction of the ~ relativistic triton binding energies in MeV. All numbers are 34
relativistic of-shell t-matrixt, . 1 channels results. The seconq columr_w is the same as the last col-

In Table 3 we demonstrate the convergence for partial umn in Table 3. The results in the third column take charge de-
wave decomposition using CDBonn potential and the CI:,Spendence[28]_ into _account_. In ad_dltlon the result of the fourth
scheme. In order to obtain accuracy beyond 3 digits, thecoIumn contains Wigner spin rotatioffects.
total spinj in the subsystem of nucleon pair, needs to be
j=4 (34ch).

We also included the Wigner spin rotation as outlined "°el-  -8.247  -8.005 - i
in [26]. Thereby the Balian-Brezin method[27]in handling (rj?f'f 'g'llgg '3'8;96 '7'?14 '0'_002
the permutations is quite useful. In Table 4 the triton bind- i i )
ing energy is shown allowing charge independence break-
ing (CIB) [28] and Wigner spin rotations. Wigner spin ro-
tation dfects reduce the binding energy by only about 2 keV.

nponly nptnn  Wigner rot. dif.

L In the former Proceedings [25] we would have thought that
MST has a sort of defect because we need a new potenitial
Eq. (14).

05025-p.4



19" International IUPAP Conference on Few-Body Problems in Physics

5 Summary 14

A phase-shift equivalent 2N potentigl in the relativis- 15

tic 2N Schrodinger equation is related to the potential

in the nonrelativistic Schrodinger equation by the momen- 16
tum scale transformation scheme and the Coester-Pieper-
Serduke scheme. The boosted potenjad related tar by
Eq.(16). With these potentials we generate the relativistic
fully-off-shell t-matrixty, which enters into the relativis-
tic Faddeev equation. We solve the relativistic bound state

Faddeev equation and compare the binding energy for thel9.

triton with the one obtained from a nonrelativistic calcula-
tion with the same input interaction.
In the case of the CPS scheme we find that tHEsdi

ence between the two calculations is only about 90 keV 21.

including CIB, where the relativistic calculation gives a

slightly reduced binding. Taking Wigner spin rotations into 22.
account in the relativistic calculation, the the binding en- 23.

ergy is reduced by a very small amount, 2 keV, indicating 24.
25.

that Wigner rotations of the spin have essentially fiect

on the predicted value of the binding energy. Applications
to the 3-body continuum are in progress. Recently [26] the
formulation lined out above has been used to study the low

energy Ay puzzle in neutron-deuteron scattering. In the in- 26.

termediate energy regime the formulation has been applied

to exclusive proton-deuteron scattering cross sections at27-
508 MeV [29,30] based on a formulation of the Faddeev 28.

equations which does not employ a partial wave decompo-

sition [31]. The approach can also be extended and applied?9-

to electromagnetic processes[32, 33].

30.
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