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Abstract. We extend a new treatment proposed for two-nucleon (2N) and three-nucleon (3N) bound states to
2N scattering. This technique takes momentum vectors as variables, thus, avoiding partial wave decomposition,
and handles spin operators analytically. We apply the general operator structure of a nucleon-nucleon (NN)
potential to the NN T-matrix, which becomes a sum of six terms, each term being scalar products of spin operators
and momentum vectors multiplied with scalar functions of vector momenta. Inserting this expansions of the NN
force and T-matrix into the Lippmann-Schwinger equation allows to remove the spin dependence by taking traces
and yields a set of six coupled equations for the scalar functions found in the expansion of the T-matrix.

1 Introduction

In Ref. [1] a new formulation for the 2N and 3N bound
states in three dimensions has been proposed. In this tech-
nique momentum vectors are taken as variables, avoiding
a traditional partial-wave decomposition. In addition spin
operators occurring as scalar products of spin and momen-
tum vectors - shortly called spin-momentum operators - are
evaluated analytically by means of trace operations. In this
approach a NN force is employed using its most general
operator structure, i.e. as sum of 6 spin-momentum opera-
tors multiplied with scalar functions of momenta. A spin-
momentum operator representation is used as well for the
2N and 3N bound states, as in Refs. [2] and [3], respec-
tively.

We extend the technique developed in Ref. [1] to NN
scattering. This would be an alternative to other three-
dimensional approach formulated in a momentum-helicity
basis [4]. In addition we introduce a new set of spin-
momentum operators different from the one used in
Ref. [1]. We find one of the spin-momentum operators in
Ref. [1] violates time reversal and, therefore, has to be mul-
tiplied with a time-reversal violating scalar function. Here
we prefer to work with operators, which are also invariant
with respect to time reversal. The idea is to apply the gen-
eral operator structure not only to the NN force but also
to the NN T-matrix. The goal is then to find the scalar
functions in the expansion of the T-matrix into the spin-
momentum operators. First, we insert the spin-momentum
operators expansions of the NN interaction and T-matrix
into the Lippmann-Schwinger equation. Next by analyti-
cal evaluation we remove the spin dependence yielding fi-
nally a set of coupled equations for the scalar functions of

a e-mail: imamf@fisika.ui.ac.id

the T-matrix. Finally we connect the T-matrix to the anti-
symmetrized scattering amplitude parameterized by the
Wolfenstein parameters.

2 Formulation

2.1 The general operator structure of NN potential

The general operator structure of NN potential reads

V tmt (p′, p) =
6∑

j=1

vtmt
j (p′, p) w j(σ1,σ2,p′, p), (1)

with V tmt (p′,p) being the NN potential projected on the
NN total isospin states | tmt〉 as

V tmt (p′,p) = 〈tmt | V(p′,p) | tmt〉. (2)

The scalar functions vtmt
j (p′,p) depend only on the vector

momenta. the w j(σ1,σ2,p′,p) are a set of spin-momentum
operators,

w1(σ1,σ2,p′, p) = 1
w2(σ1,σ2,p′, p) = σ1 · σ2
w3(σ1,σ2,p′, p) = i (σ1 + σ2) · (p × p′)
w4(σ1,σ2,p′, p) = σ1 · (p × p′) σ2 · (p × p′)
w5(σ1,σ2,p′, p) = σ1 · (p′ + p) σ2 · (p′ + p)
w6(σ1,σ2,p′, p) = σ1 · (p′ − p) σ2 · (p′ − p), (3)

which is time-reversal invariant. As an example a leading
order (LO) chiral NN potential is given as [5]
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VLO(p′,p) = − 1
(2π)3

g2
A

4F2
π

w6(σ1,σ2, p′,p)
(p′ − p)2 + M2

π

τ1 · τ2

+
CS

(2π)3w1(σ1,σ2,p′,p)

+
CT

(2π)3w2(σ1,σ2,p′,p). (4)

2.2 The deuteron

We briefly describe the formulation for the deuteron. The
deuteron has total spin 1 and isospin 0. In spin-momentum
operator representation the deuteron state is given as [2]

Ψmd (p) = 〈p|Ψmd 〉 =
2∑

k=1

φk(p) bk(σ1,σ2,p)|1md〉, (5)

where |1md〉 is the total-spin state with magnetic quantum
number md, φk(p) scalar functions depending on the mag-
nitude of momenta only, and bk(σ1,σ2,p) spin-momentum
operators given as

b1(σ1,σ2,p) = 1

b2(σ1,σ2,p) = σ1 · p σ2 · p −
1
3

p2. (6)

The scalar functions φk(p) are connected to the standard
partial-wave projected deuteron s-wave ψ0(p) and d-wave
ψ2(p) by [2]

ψ0(p) = φ1(p)

ψ2(p) =
4p2

3
√

2
φ2(p). (7)

Inserting Ψmd (p) of Eq. (5) and V tmt (p′,p) of Eq. (1) into
the Schrödinger equation for the deuteron in integral form,

Ψmd (p) =
1

Ed − p2

m

∫
d3 p′V00(p, p′)Ψmd (p′), (8)

yields

2∑
k=1

φk(p) bk(σ1,σ2,p)|1md〉

=
1

Ed − p2

m

∫
d3 p′

6∑
j=1

v00
j (p, p′) w j(σ1,σ2,p,p′)

2∑
k′=1

φk′(p) bk′(σ1,σ2,p′)|1md〉. (9)

To remove the spin dependence from Eq. (9) we project
Eq. (9) on 〈1md |bi(σ1,σ2,p) from the left and sum up over
md. We obtain

2∑
k=1

Ad
ik(p)φk(p) =

1

Ed − p2

m

∫
d3 p′

6∑
j=1

v00
j (p,p′)

2∑
k′=1

Bd
i jk′ (p,p

′)φk′ (p′), (10)

which is a set of two coupled equations for φk(p), with
Ad

ik(p) and Bd
i jk′(p, p

′) being defined as

Ad
ik(p) ≡

1∑
md=−1

〈1md |bi(σ1,σ2,p)bk(σ1,σ2,p)|1md〉 (11)

Bd
i jk′ (p,p

′) ≡
1∑

md=−1

〈1md |bi(σ1,σ2,p)w j(σ1,σ2, p, p′)

bk′(σ1,σ2,p′)|1md〉. (12)

The functions Ad
ik(p) and Bd

i jk′(p, p
′) are scalar functions of

the vectors p and p′, and need to be calculated only once.
As example we have e.g.

Ad
11(p) = 3

Ad
22(p) =

8
3

p4

Bd
141(p, p′) = (p × p′)2

Bd
151(p, p′) = (p′ + p)2

Bd
161(p, p′) = (p′ − p)2. (13)

2.3 The NN scattering

The operator structure given in Eq. (1) for NN force can
also be applied to the NN T-matrix as

T tmt (p′,p) =
6∑

j=1

ttmt
j (p′,p) w j(σ1,σ2, p′,p), (14)

with ttmt
j (p′,p) being the scalar functions to be found. In-

serting both the expansion in Eqs. (1) and (14) into the
Lippmann-Schwinger equation,

T tmt (p′,p) = V tmt (p′,p)

+2µ lim
ε→0

∫
dp′′

V tmt (p′,p′′)T tmt (p′′,p)
p2 + iε − p′′2

, (15)

where µ is the reduced mass of the NN system, leads to

6∑
k=1

ttmt
k (p′, p) wk(σ1,σ2,p′,p)

=

6∑
k=1

vtmt
k (p′,p) wk(σ1,σ2,p′,p)

+2µ lim
ε→0

∫
dp′′

1
p2 + iε − p′′2

6∑
j=1

vtmt
j (p′,p′′) w j(σ1,σ2, p′,p′′)

6∑
k′=1

ttmt
k′ (p′′,p) wk′(σ1,σ2,p′′,p). (16)

We remove the spin dependence from Eq. (16) by multi-
plying from the left with wi(σ1,σ2,p′,p) and perform the
trace. This leads to
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6∑
k=1

Aik(p′,p)ttmt
k (p′,p)

=

6∑
k=1

Aik(p′,p)vtmt
k (p′,p)

+2µ lim
ε→0

6∑
j,k′=1

∫
dp′′

1
p2 + iε − p′′2

Bi jk′(p′,p′′, p)vtmt
j (p′,p′′)ttmt

k′ (p′′,p), (17)

where Aik(p′,p) and Bi jk′ (p′,p′′,p) are defined as

Aik(p′,p) ≡ Tr{wi(σ1,σ2,p′,p)
wk(σ1,σ2,p′,p)} (18)

Bi jk′(p′, p′′,p) ≡ Tr{wi(σ1,σ2,p′,p)w j(σ1,σ2,p′,p′′)
wk′(σ1,σ2,p′′,p)} (19)

Again the functions Aik(p′,p) and Bi jk′ (p′,p′′,p) are scalar
functions of the momenta p and p′, and need to be evalu-
ated only once. As example we show here,

A24(p′, p) = A42(p′,p) = 4(p × p′)2

A56(p′, p) = A65(p′,p) = 4(p′2 − p2)2

B122(p′,p′′, p) = B212(p′,p′′, p) = B221(p′,p′′,p) = 12
B124(p′,p′′, p) = B214(p′,p′′, p) = 4(p × p′′)2

B144(p′,p′′, p) = 4{(p′′ × p′) · (p × p′′)}2 (20)

Equation (17) is a set of six coupled equations for ttmt
k (p′,p),

which can e.g. be solved as a system of linear equations.
The NN scattering observables can be calculated from

the anti-symmetrized scattering amplitude Mtmt
m′1m′2,m1m2

(p′,p),
which is defined as

Mtmt
m′1m′2,m1m2

(p′,p)
≡ 〈tmt |〈m′1m′2|〈p′|M(1 − P12)|p〉|m1m2〉|tmt〉 (21)

and can be parameterized by the Wolfenstein parameters
atmt (p′,p), ctmt (p′,p), mtmt (p′,p), gtmt (p′,p), htmt (p′,p)
as [6]

Mtmt
m′1m′2,m1m2

(p′, p)
= atmt (p′,p) 〈m′1m′2|w1(σ1,σ2,p′,p)|m1m2〉

−i
ctmt (p′,p)
|p × p′| 〈m

′
1m′2|w3(σ1,σ2,p′,p)|m1m2〉

+
mtmt (p′,p)
|p × p′|2 〈m

′
1m′2|w4(σ1,σ2, p′,p)|m1m2〉

+
gtmt (p′,p) + htmt (p′, p)

(p + p′)2

〈m′1m′2|w5(σ1,σ2,p′,p)|m1m2〉

+
gtmt (p′,p) − htmt (p′, p)

(p − p′)2

〈m′1m′2|w6(σ1,σ2,p′,p)|m1m2〉. (22)

Thus, finally we connect the scattering amplitude or simi-
larly the Wolfenstein parameters to the scalar function
ttmt

j (p′,p). This can be accomplished by means of Eq. (22)
and the relation between the M- and T-matrix given as

M = −µ(2π)2T. (23)

We obtain

atmt = t1 + (−)t
[1
2

t̃1 +
3
2

t̃2

+
1
2

p4(1 − x2)t̃4 + p2(1 − x)t̃5 + p2(1 + x)t̃6
]

ctmt = ip2
√

1 − x2
(
t3 − (−)t t̃3

)
mtmt = t2 + p4(1 − x2)t4 + (−)t

[1
2

t̃1 −
1
2

t̃2

+
1
2

p4(1 − x2)t̃4 − p2(1 − x)t̃5 − p2(1 + x)t̃6
]

gtmt = t2 + p2(1 + x)t5 + p2(1 − x)t6
+(−)t

[1
2

t̃1 −
1
2

t̃2 −
1
2

p4(1 − x2)t̃4
]

htmt = p2(1 + x)t5 − p2(1 − x)t6
+(−)t

[
− p2(1 − x)t̃5 + p2(1 + x)t̃6

]
., (24)

where x = p̂′ · p̂ Note that in Eq. (24) we drop p and p′ for
simplicity and apply the following notation,

t j ≡ ttmt
j (p′,p)

t̃ j ≡ ttmt
j (p′,−p). (25)

3 Summary

We propose a new technique to calculate the 2N system
as function of momentum vectors, i.e. without employing
a partial wave decomposition. The technique is useful es-
pecially in energy regions of hundreds of MeV or when
considering the NN t-matrix as input to a three-body calcu-
lation. Based on scalar interactions, the scattering of three-
bosons has been successfully carried out up to the GeV
regime, formulating the Faddeev equations as functions of
vector momenta [7]. The formulation of NN scattering pre-
sented here is an important step on the way of performing
realistic three-body scattering calculations at higher ener-
gies.

Based on the general operator structure of the NN inter-
action we derive the formulation in a spin-momentum op-
erator representation. Here the NN potential, the T-matrix,
and the deuteron state are expanded in a set of scalar prod-
ucts of spin operators and momentum vectors. We derive a
set of two coupled equations for the deuteron wave func-
tion components, which are connected to the standard par-
tial wave projected wave function s- and d-wave in a sim-
ple manner. In case of the NN scattering we obtain a set of
six coupled equations for the scalar functions defining the
NN T-matrix, and therefore, the scattering amplitude in the
Wolfenstein representation.
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1. W. Glöckle, Ch. Elster, J. Golak, R. Skibiński,
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