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Abstract. For a sharply cut-off Coulomb potential we derive analytically the asymptotic form of the three-
dimensional wave function and the related scattering amplitude. We show a failure of the standard renormal-
ization factor which is believed to be generally valid for any type of screening. We obtain also the asymptotic
form of the corresponding three-dimensional half-shell t-matrix. Our results are fully supported by the numerical
solutions of the three-dimensional Lippmann-Schwinger equation.

1 Introduction

The long range behavior of the Coulomb force causes tech-
nical problems in the scattering for more than two parti-
cles. A possible solution proposed long time ago is to start
with a screened Coulomb potential. In the limit of an in-
finite screening radius it is claimed in the literature [1–3]
that the on-shell two-body t-matrix approaches the phys-
ical one except for an infinitely oscillating phase factor,
known analytically. By removing that factor (the so-called
renormalization) the physical result can be obtained. As a
basis for that approach papers by Gorshkov [4,5], Ford [6,
7] and Taylor [1,2] are most often quoted. However, only
Gorshkov [4,5] works directly in three dimensions and o-
ther authors rely on a partial wave decomposition. This
leaves at least doubts about the rigorousness of that ap-
proach, where the infinite sum over angular momenta is
carried out without control of its validity for the correction
terms.

In such a situation we felt that a rigorous analytical
approach for a sharply cut off Coulomb potential carried
through directly in three dimensions is in order. This pre-
sentation based on our two papers [8,9] delivers the asymp-
totic form of the three-dimensional wave function (sec-
tion 2) and the scattering amplitude (section 3). We ob-
tain also the asymptotic form of the corresponding three-
dimensional half-shell t-matrix (section 4). These purely
analytical results are confirmed by numerical studies pre-
sented in section 5. We summarise in section 6.
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2 The wave function for a sharply cut-off
Coulomb potential

Let us regard two equally charged particles with massm.
Then the two-body Schrödinger equation reads

(−∇2 − p2 +
me2

r
)Ψ (+)(r) = 0 . (1)

It is well known that in the parabolic coordinates

u = r − z

v = r + z

cosφ = x/r, sinφ = y/r , (2)

the partial differential equation factorizes and yields the
solution

Ψ (+)(r) = const eip·r
1F1(−iη, 1, i(pr − p · r)) (3)

with Somerfeld parameterη = me2

2p .
Now weswitch to a sharply screened Coulomb poten-

tial

V(r) = Θ(R − r)
e2

r
(4)

and rewrite(1) into the form of the Lippmann-Schwinger
equation

Ψ
(+)
R (r) =

1

(2π)3/2
eip·r

−
m
4π

∫

d 3r′
eip|r−r ′ |

|r − r ′|
Θ(R − r′)

e2

r′
Ψ

(+)
R (r ′) . (5)

This defines uniquelythe wave functionΨ (+)
R (r) for a given

cut-off radiusR. Forr < R we assume that

Ψ
(+)
R (r) = Aeip·r

1F1(−iη, 1, i(pr − p · r)) (6)
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with some to be found constantA. (As pointed out in [10]
this assumption is not generally correct and valid only in
the limit of the infinite cut-offradius.) Next we insert this
form (6) into the Lippmann-Schwinger equation (5) ob-
taining forr < R the following identity

Aeip·r
1F1(−iη, 1, i(pr − p · r)) =

1

(2π)3/2
eip·r

−
m
4π

∫

d 3r′
eip|r−r ′ |

|r − r ′|
Θ(R − r′)

e2

r′

× A eip·r ′
1F1(−iη, 1, i(pr′ − p · r ′)) , (7)

which determines the factorA. We choose ˆp = ẑ and work
with the parabolic coordinates. Then (7) turns into

Aei p
2 (v−u)

1F1(−iη, 1, ipu) =
1

(2π)3/2
ei p

2 (v−u)

+A
e2

2

∫ 2R

0
du′e−i p

2 u′
1F1(−iη,1, ipu′)

×

∫ 2R−u′

0
dv′ei p

2 v
′

(−
m
4π

)
∫ 2π

0
dφ′

eip|r−r′ |

|r − r′|
. (8)

Sincewe want to determine just one factorA one value
of u and v is sufficient and we choose the simplest case
u = v = 0. Then theφ′ integration is trivial and one obtains

A =
1

(2π)3/2
− A

e2m
2

∫ 2R

0
du′1F1(−iη, 1, ipu′)

×

∫ 2R−u′

0
dv′eipv′ 1

u′ + v′
, (9)

wherewe used1F1(−iη, 1,0) = 1. Substitutingu′ = 2Rx,
v′ = 2Ry and definingA ≡ Ã 1

(2π)3/2 oneobtains

Ã = 1− ÃηT
∫ 1

0
dx1F1(−iη, 1, iT x)

∫ 1−x

0
dyeiTy 1

x + y
(10)

with T ≡ 2pR.
Introducingz ≡ iT let us define

F̃(z) = 1+
ηz
i

∫ 1

0
dx1F1(−iη, 1,zx)

∫ 1−x

0
dyezy 1

x + y
. (11)

Substitutingzx = τ, zy = τ′ we get

F̃(z) = 1− iη
∫ z

0
dτ1F1(−iη, 1, τ)

∫ z−τ

0
dτ′eτ

′ 1
τ + τ′

. (12)

Thenit follows

dF̃(z)
dz
= −

iη
z

ez
∫ z

0
dτ1F1(−iη,1, τ)e−τ (13)

d 2F̃(z)
dz2

=
iη
z2

ez
∫ z

0
dτ1F1(−iη,1, τ)e−τ −

iη
z

ez
∫ z

0
dτ1F1(−iη,1, τ)e−τ

−
iη
z

ez
∫ z

0
dτ1F1(−iη,1, τ)e−z

= −
1
z

dF̃(z)
dz
+

dF̃(z)
dz
−

iη
z 1F1(−iη,1, z) . (14)

Consequently

z
d 2F̃(z)

dz2
+ (1− z)

dF̃(z)
dz
= −iη1F1(−iη, 1,z) . (15)

We addiηF̃(z) on both sides

z
d 2F̃(z)

dz2
+ (1− z)

dF̃(z)
dz
+ iηF̃(z)

= iη(F̃(z) − 1F1(−iη, 1,z)) . (16)

Theleft side put to zero is the defining differential equation
for 1F1(−iη, 1,z). Thus (16) is fulfilled for

F̃(z) = 1F1(−iη, 1,z) (17)

which also fixes the normalisation. We end up with the ex-
act formula forÃ

Ã =
1

1F1(−iη, 1, iT )
. (18)

andthe asymptotic form of the wave function forr < R

Ψ
(+)
R (r) =

1
(2π)3/2

1

1F1(−iη, 1, iT )
eip·r

1F1(−iη, 1, i(pr − p · r)) . (19)

3 The scattering amplitude

The scattering amplitudefR is defined forr → ∞ by

Ψ
(+)
R (r) →

1

(2π)3/2
eip·r +

eipr

r
fR . (20)

Using(5) and (19), our starting point becomes

f̃R = Ã(−
m
4π

)
∫

r′<R

d 3r′e−ipr̂·r ′ e
2

r′
eip·r ′

× 1F1(−iη, 1, (pr′ − p · r ′)) . (21)

where f̃R = 1
(2π)3/2 fR. We use the general integral represen-

tation of1F1(α, β, z)

1F1(α, β, z) = C(α, β)
∫

Γ

dtezttα−1(1− t)β−α−1 (22)

where the pathΓ encircles the logarithmic cut betweent =
0 andt = 1 in the positive sense and the prefactor is

C(α, β) =
Γ(β)

Γ(α)Γ(β − α)
1

1− e2πi(β−α)
. (23)

After lengthy algebra [8] we obtain

f̃R = (2R̃ )−2iηAc(θ) +

η

4p sin 2 θ
2

















e2iR̃ sin θ2 (

(

1− sin θ2
)

2
)iη
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+e−2iR̃ sin θ2













(1+ sin θ2)

2













iη














=
[

e−2iηln(2R̃)−

1
2

eiη ln sin2 θ
2−2iσ0

(

e2iR̃ sin θ2+iη ln
1−sin θ2

2 +

e−2iR̃ sin θ2+iη ln
1+sin θ2

2

)]

Ac(θ) , (24)

where the physical Coulomb scattering amplitude is

Ac(θ) = −
η

2p

(sin2 θ
2)−iη

sin2 θ
2

e2iσ0 , (25)

Γ(1+ iη)
Γ(1− iη)

≡ e2iσ0 (26)

andθ is the scattering angle.
Only the first term in (24) is the result expected from

the literature, see [1,3] and references therein. This means
that the derivations based on partial wave decomposition
must be incomplete.

4 Half-shell t-matrix

The asymptotic form of the half-shell t-matrix is given as

< p ′|VR|Ψ
(+)
R >=

1
(2π)3/2

A
∫

d 3re−ip′·rVR(r)eip·r

× 1F1(−iη, 1, i(pr − p · r)) . (27)

As before, we start from the integral representation of the
confluent hypergeometric function

1F1(−iη, 1, i(pr − p · r)) =

C(−iη, 1)
∫

Γ

dt(
1− t

t
)iη 1

t
ei(pr−p·r)t . (28)

Ther-integral is straightforward leading to
∫

r<R

d 3rei(p−p′)·r 1
r

eiprte−ip·rt =

−4π
2Ω

[
ei(pt+Ω)R − 1

pt + Ω
−

ei(pt−Ω)R − 1
pt − Ω

] (29)

with

Ω =

√

p2t2 − 2tp · ∆ + ∆2 , (30)

∆ = p − p ′ . (31)

Thus

< p ′|VR|Ψ
(+)
R >≡ −2π

e2

(2π)3/2
AC(−iη, 1)Y , (32)

where

Y =
∫

Γ

dt(
1− t

t
)iη 1

t
1
Ω

[
ei(pt+Ω)R − 1

pt + Ω
−

ei(pt−Ω)R − 1
pt − Ω

] .(33)

Next we have to distinguish the two cases:p′ > p and
p′ < p. After complicated algebra [9] we obtain forp′ < p
the following result in the screening limit

< p ′|VR|Ψ
(+)
R >→ e−iηln2pR < p ′|VC |Ψ

C(+)
p >

−
e2

(2π)2
1
∆2

[

eiR∆(
1
2

(p −
p · ∆
∆

))iη+

e−iR∆(
1
2

(p +
p · ∆
∆

))iη

]

, (34)

thepure half shell t-matrix is well known [11] and forp′ <
p given by

< p ′|VC |Ψ
C(+)
p >=

e2

2π2
e
π
2ηΓ(1+ iη)

1
∆2

(
p2 − p′2

∆2
)iη .(35)

Thefirst term in (34) is expected [6]. But there is, like for
the on-shell t-matrix, an additional term, which only after
integration over some angular region would disappear in
the screening limit.

In the case ofp′ > p the pure half shell t-matrix differs
by a factore−πη and is

< p ′|VC |Ψ
C(+)
p >=

e2

2π2
e−

π
2ηΓ(1+ iη)

1
∆2

(
p′2 − p2

∆2
)iη .(36)

In this case we find the following result in the screening
limit

< p ′|VR|Ψ
(+)
R >→ e−iηln2pR < p ′|VC |Ψ

C(+)
p >

−e2πη e2

(2π)2
1
∆2

[

eiR∆(
1
2

(p −
p · ∆
∆

))iη+

e−iR∆(
1
2

(p +
p · ∆
∆

))iη

]

. (37)

Thefirst term has the same structure as in (34) but the sec-
ond one differs by the factore2πη from the one in (34).

5 Numerical results

We performed a number of numerical tests to check the
basic points of our algebra leading to the asymptotic form
of the wave function and the scattering amplitude [8]. For
example we calculated the relative difference between left
and right sides of Eq. (8) for a number of points inside the
regionr < R. The results are shown in Table 1.

To check the quality of our renormalization factor (24)
we applied it directly to the numerical solutions of the
Lippmann-Schwinger equation obtained in the momentum
space for the sharply cut offCoulomb potential. Details of
the numerical performance can be found in [12,8]. In Fig. 1
we compare the resulting transition amplitudesAC(θ) ≡
−2π2m T (q0, q0, cosθ) with the pure Coulomb amplitude
for R= R = 40 and 80 fm. With increasing cut-offra-
dius a development of strong oscillations in the scatter-
ing angle dependence for the real parts of the numerical
solutions is clearly seen. These oscillations follow on av-
erage the real part of the pure Coulomb amplitude given

05017-p.3
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Table 1. The relative difference between left (L13) and right (R13) sides of Eq. (8):|L13−R13|
|R13| × 100%for different directions ofr at E=3

and E=13 MeV.

E=3 MeV E=13 MeV
R [fm] r [fm] θ = 30◦ θ = 90◦ θ = 150◦ θ = 30◦ θ = 90◦ θ = 150◦

100 80 1.83487 2.37415 0.54698 0.41693 1.03684 0.19990
150 80 0.29032 0.82779 0.30193 0.11503 0.38629 0.10682
200 80 0.42749 0.35520 0.20520 0.07251 0.15571 0.03989
500 80 0.02969 0.08112 0.06497 0.02827 0.02510 0.00620
1000 80 0.01216 0.02270 0.03268 0.01309 0.01621 0.00347
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Fig. 1. (Color online) The real (top) and imaginary (bottom) part ofAC(θ) ≡ −2π2m T (q0, q0, cosθ) as a function of cosθ for R= 40
fm (left panel) and 80 fm (right panel) atElab

p = 13 MeV. The dash-dotted line represents a direct numerical prediction (without any
renormalization). The dotted line showsAC(θ) with inclusion of the asymptotic renormalization factor given in (24) and the dashed (red)
line is for AC(θ) with inclusion of a more general renormalization factor [8]. The solid line represents the pure Coulomb amplitude given
in (25).

by (25) and shown by the solid line. The imaginary parts
of the numerical solutions are totally offfrom the imag-
inary part of the pure Coulomb amplitude and have even
an opposite sign. Applying to the numerical solutions the
asymptotic renormalization factor from (24) dramatically
improves the agreement. Not only the oscillations in the
real parts are removed and the pure Coulomb and renor-
malised amplitudes are practically overlapping but the re-
normalization brings also imaginary parts into agreement
with the exception of very forward angles. We also checked
that the two additional terms in the renormalization fac-
tor of (24) are absolutely crucial and that the “standard”
renormalization (without these terms) fails totally. This is
demonstrated in Fig. 2.

In Fig. 3 we compare the derived asymptotic form of
the half-shell t-matrix,T (q′, q0, x; q0), with the correspond-

ing numerical solutions of the Lippmann-Schwinger equa-
tion for the screening radiusR= 80 fm. The analytical asym-
ptotic form agrees rather well with the numerical result for
the real part. The agreement is in fact very good in the re-
gion of q′ < q0 and a bit less satisfactory forq′ > q0.
For the imaginary part there are clear deviations between
the analytical and numerical results, which become more
pronounced forx ≥ 0. In particular the analytical results
show much more oscillatory behavior forq′ > q0. Note
also a sharp structure aroundq′ = q0 which develops for
the imaginary part atx ≥ 0.
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Fig. 2. (Color online) The real (top) and imaginary (bottom) part ofAC(θ) ≡ −2π2m T (q0, q0, cosθ) as a function of cosθ for R= 20 fm (left
panel) and 100 fm (right panel) atElab

p = 13 MeV. The dotted line represents a direct numerical prediction (without any renormalization).
The solid (red) line showsAC(θ) with renormalization factore−2iηln(2pR) and the dashed line represents the pure Coulomb amplitude given
in (25).

6 Summary

The renormalization method for a screened on-shell Cou-
lomb t-matrix enjoys a widespread use; see for instance
[13,14]. As pointed out in the introduction the underly-
ing mathematical considerations leave room for doubts.
To shed light on that issue we regarded potential scatter-
ing on the sharply cut-offCoulomb potential directly in
three dimensions, avoiding difficulties in the infinite sum
of angular momenta. We succeeded to determine analyti-
cally the asymptotic form of the wave function. This al-
lowed us to derive the analytical expression for the scat-
tering amplitude in the limit of infinite cut-offradius. The
connection to the standard Coulomb scattering amplitude
Ac(θ) turned out, however, to be different from the stan-
dard form used widely in the literature and is given in (24).
Our form consists of two terms, one of which is the stan-
dard one,e−2iηln2prAc(θ). To that, however, is added a new
expression which is singular atθ = 0 andθ = π. These
analytical results are fully supported by accompanying nu-
merical investigations. Our renormalization factor for the
on-shell t-matrix brings in a very good agreement between
the strongly deviating and oscillating numerical solution
of the Lippmann-Schwinger equation with the sharp cut
off Coulomb potential and the exact Coulomb amplitude.
The standard renormalization factor fails completely.

We found also analytically the screening limit of the
three-dimensional half-shell t-matrix for the same poten-

tial. Numerical solutions of the three-dimensional Lipp-
mann-Schwinger equation for large cut-offradii agree fairly
well with the asymptotic values.

Acknowledgments

This work was supported by the Polish 2008-2011 sci-
ence funds as the research project No. N N202 077435. It
was also partially supported by the Helmholtz Association
through funds provided to the virtual institute “Spin and
strong QCD”(VH-VI-231) and by the European Commu-
nity-Research Infrastructure Integrating Activity “Study of
Strongly Interacting Matter” (acronym HadronPhysics2, G-
rant Agreement n. 227431) under the Seventh Framework
Programme of EU. The numerical calculations have been
performed on the supercomputer cluster of the JSC, Jülich,
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