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Abstract. We demonstrate numerically that proton-proton (pp) scattering observables can be determined di-
rectly by standard short range methods using a screened pp Coulomb force without renormalization. We nu-
merically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS) equation for an exponentially
screened Coulomb potential. For the limit of large screening radii we confirm analytically predicted properties
for off-shell, half-shell and on-shell elements of the Coulomb t-matrix.

1 Introduction

Recently [1], we proposed a method to obtain pp scattering
observables using a screened Coulomb force in the stan-
dard framework of short range interactions. Namely, de-
spite the fact that the screening limit of the on-shell scat-
tering amplitude does not exist and acquires an oscillating
phase factor if the screening radius goes to infinity [2–5],
it is still possible to obtain pp observables without renor-
malization of the scattering amplitude.

The two-body screened Coulomb t-matrix is an input to
study proton-deuteron processes. In a series of papers [6,
7] related to the pd system, the screened Coulomb t-matrix
was used in two forms: in the partial wave decomposition
and in the direct 3-dimensional form< p ′|tR

c (E)|p >. The
latter one is a solution of the 3-dimensional two-body LS
equation driven by the screened Coulomb potential. Us-
ing this form one takes into account the full action of the
Coulomb force in the pd system. This allows to avoid big
number of partial waves required otherwise.

The off-the-energy-shell, half-shell and on-shell prop-
erties of the screened Coulomb t-matrix have been studied
analytically in the past [2–4,8–10]. These investigations,
however, mostly rely on insight gained for fixed number of
partial wave states. Their mathematical rigour in the sum-
mation of the partial wave sum to infinity leaves room for
improvement. Therefore, we study numerically the scree-
ning limit of < p ′|tR

c (E)|p > for the off-, half- and on-
shell matrix elements and compare obtained results with
the unscreened pure Coulomb force predictions. For the
half-the-energy-shell and for the on-the-energy-shell ele-
ments we also checked the scale of effects of the renormal-
ization procedure. This allows to point the values of the
screening range for which the screening limit is reached
with the adequate accuracy.

This paper is organized as follows: in Section II we dis-
cuss pp scattering observables. In Section III the 3-dimen-
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sional LS equation for the 3-dimensional, screened Cou-
lomb t-matrix is presented and examples of its matrix el-
ements and their properties are shown in Section IV. We
summarize in Section V.

2 The on-shell pp t-matrix with screened
Coulomb potential and the pp observables

Let VR
c be the screened Coulomb potential between 2 pro-

tons, which turns into the pure pp Coulomb potential for
R, the screening radius, going to infinity. Together with the
strong interaction V this determines the 2-body pp t-matrix
via the LS equation

t = V + VR
c + (V + VR

c )G0t , (1)

whereG0 is the free propagator. That equation is solved

at thepp c.m. energyE = p2

mp
projected on a set of partial

wave basis states|p(ls) jm; tmt >, with p, l, s, j andm being
the relative momentum, orbital angular momentum, total
spin, total angular momentum and its magnetic quantum
number.

The total isospin quantum numbers for two protons are
t = 1 andmt = −1. This leads to the on-the-energy-shell
t-matrix element

< p(l′s′) j′m′|t|p(ls) jm >= δs′sδ j′ jδm′mts j
l′l(p, p) , (2)

where the Pauli principle dictates (−)l+s
= 1 and we as-

sumeds to be conserved.
The full 3-dimensional antisymmetrized on-shell t-ma-

trix is given as

< p ′m′1m′2|t(1− P12)|pm1m2 > , (3)

wheremi(m′i) are the individual spin magnetic quantum
numbers andp = pp̂, p ′ = pp̂ ′ the initial and final relative
momenta.
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The standard partial wave decomposition leads to

< p ′m′1m′2|t(1− P12)|pm1m2 >=
∑

s

(
1
2

1
2

s,m′1m′2m′s)

(
1
2

1
2

s,m1m2ms)
∞
∑

j=0

j
∑

m=− j

j+s
∑

l′=| j−s|

j+s
∑

l=| j−s|

∑

m′l

(l′s j,m′l ,m
′
s,m)Yl′m′l

( p̂ ′)ts j
l′l(p, p)(1+ (−)l+s)

∑

ml

(ls j,mlms,m)Y∗lml
( p̂) . (4)

The strong force can be neglected beyond a certainjmax

and there only the screened Coulomb t-matrixtR
cl is present,

which is diagonal inl and independent ofs and j. Next, one
adds and subtracts a finite sum up tojmax with tR

cl only and
this completes the infinite sum overj containing onlytR

cl.
That infinite sum is identical to the 3-dimensional antisym-
metric screened Coulomb t-matrix. Thus (4) turns into

< p ′m′1m′2|t(1− P12)|pm1m2 >= δm′1m1δm′2m2 < p ′|tR
c |p >

− δm′1m2δm′2m1 < p ′|tR
c | − p > +

∑

s

(
1
2

1
2

s,m′1m′2m′s)

(
1
2

1
2

s,m1m2ms)
∞
∑

j=0

j
∑

m=− j

j+s
∑

l′=| j−s|

j+s
∑

l=| j−s|

∑

m′l

(l′s j,m′l ,m
′
s,m)Yl′m′l

( p̂ ′) (ts j
l′l(p, p) − δl′lt

R
cl)(1+ (−)l+s)

∑

ml

(ls j,mlms,m)Y∗lml
( p̂) . (5)

The limit of that expression does not exist forR →
∞ [3,4]. Then each term in (5) acquires the same infinitely
oscillating phase factore2iΦR(p), whereΦR(p) depends on
the type of the screening used. If one is interested in phase
shifts it is unavoidable to keep track of this oscillating fac-
tor which in that context runs under the name renormaliza-
tion [5]. However, if one is interested in the pp observables,
the cross section and spin observables, where the on-shell
t-matrix appears together with its complex conjugate, the
oscillating factor drops out. Note thatΦR(p) is independent
of spin magnetic quantum numbers.

Thus, the pp observables based on the strong and the
screened Coulomb force can be calculated without renor-
malization using standard short range methods. Only the
values of the parameterR at which the observables get in-
dependent ofR have to be established.

In this work we use the exponential type of screening
which depends on two parameters, the screening radiusR
and the powern:

VR
c (r) =

e2

r
e−( r

R )n

. (6)

At a given valuen, which we take fromn = 1 up to
4, the pure Coulomb potential is restored forR → ∞. The
phase factor for the exponential screening reads [11]

ΦR(p) = −η[ln(2pR) − γ/n] (7)

whereγ = 0.5772. . . is the Euler number andη = mpe2

2p the
Sommerfeld parameter.
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Fig. 1. (color online) The pp scattering cross section (dσ
dΩ ), analyz-

ing power (Ay), spin correlation coefficient (Cyy), and spin trans-
fer coefficient (Ky

′
y ) at Elab

p = 13 MeV as a function of the c.m.
scattering angle calculated with the screened Coulomb force and
the CD Bonn nucleon-nucleon potential [13], which is kept for
the partial waves up toj ≤ 3. The screened results are forn = 4
and different values of the screening radiusR: R = 20 fm (dot-
ted line),R = 60 fm (dashed-dotted line),R = 120 fm (dashed
line), andR = 180 fm (solid line). The thick dots are the Vincent-
Phatak’s exact results.

In Fig. 1 we show for several pp observables the con-
vergence with respect toR for n = 4 at Elab

p = 13 MeV.
The resulting limiting values agree very well with the ex-
act standard predictions obtained using the Vincent-Phatak
method [12]. For this energy the screening limit for ob-
servables is achieved atR = 120 fm.

In Fig. 2 we demonstrate for the same observables the
independence on the value ofn at sufficiently large R-value.
Again the agreement with the results of the Vincent-Phatak
method is seen. The deviation with respect to the latter pre-
dictions and values ofn = 1, 2, 3 and 4 and screening ra-
diusR = 120 fm is below 1%.

3 The 3-dimensional Lippmann-Schwinger
equation

Let us regard the LS equation for two protons interacting
only with the screened Coulomb potentialVR

c . The t-matrix
element< p ′|tR

c (E = k2

mp
)|p >≡ tR

c (p′, p, x = p̂ · p̂ ′; E)
fulfills for given energy E the equation [14]

tR
c (p′, p, x) =

1
2π
vRc (p′, p, x, 1)+

∫ ∞

0
dp” p”2

∫ 1

−1
dx”vRc (p′, p” , x, x”)

1

E + iǫ − p”2

mp

tR
c (p” , p, x”) (8)

with

vRc (p′, p, x′, x) ≡
∫ 2π

0
dφ

VR
c (p′, p, x′x +

√
1− x′2

√
1− x2cosφ) . (9)
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Fig. 2. (color online) The convergence of the pp scattering cross
section (dσdΩ ), analyzing power (Ay), spin correlation coefficient

(Cyy), and spin transfer coefficient (Ky
′
y ) at Elab

p = 13 MeV as a
function of the c.m. scattering angle calculated with the screened
Coulomb force and the CD Bonn nucleon-nucleon potential [13],
which is kept for the partial waves up toj ≤ 3. The screening
radius isR = 120 fm andn = 1 (dotted line),n = 2 (dashed-
dotted line),n = 3 (dashed line), andn = 4 (solid line). The
curves forn = 1 to n = 4 all overlap on the scale of the figure.
The exact Vincent-Phatak result is given by thick dots.

We solve Eq. (8) by discretizing all variables, generat-
ing the Neumann series and applying Padè summation.

For screening parametern = 1 the leading term in (8)
can be calculated analytically

vRc (p′, p, x′, x) =
e2

π
( (p′2 + p2 − 2p′px′x +

1
R2

)2

− 4p′2p2(1− x′2)(1− x2) )−
1
2 . (10)

Forn > 1 this is no more possible and a two-dimensional
numerical integration is required to get the leading term

vRc (p′, p, x′, x) =
e2

2π2

∫ 2π

0
dφ
∫ ∞

0
dr

sin(qr)
q

e−( r
R )n

(11)

whereq ≡
√

p2 + p′2 − 2pp′(x′x +
√

1− x′2
√

1− x2cosφ).
The detailed description, how we handle numerically this
highly oscillating integral can be found in [7].

4 The screened Coulomb t-matrix
properties

4.1 The off-shell elements

In this Subsection the three-dimensional t-matrixt(p′, p, x =
cos(θ)) will be shown as a two-dimensional function of
momentap andp′ at a given scattering angleθ.

In Figs. 3 and 4 the real and imaginary parts of the
t-matrix for n=4, R=120 fm and E=13 MeV are shown at
θ = 45◦ and 5◦, respectively. These two values are cho-
sen as representatives of intermediate and forward angles.
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Fig. 3. The real (up) and imaginary (down) parts of the
t(q, qp, cos(θ)) for the scattering angleθ = 45◦ at E=13 MeV.
The screening parameters are R=120 fm and n=4.

The real part oft has a steep maximum at small momenta
at θ = 45◦, which evolves to a hump lying along diago-
nal p′ = p for smaller angles. The spiky structure seen for
the smallest angle comes only from the graphical repre-
sentation on the finite grid ofp, p′-points. The increasing
range of the hump shows that an action of the screened
forces becomes more and more important for bigger mo-
menta when moving to the smaller scattering angles. The
imaginary part of the t-matrix has a minimum at the on-
shell pointp = p′ = k (≈ 0.396fm−1 for E=13 MeV). Its
absolute value is about three orders of magnitude smaller
than the maximum ofRe(t). The minimum ofIm(t) be-
comes deeper and narrower with decreasing angle.

The pure off-shell Coulomb t-matrix is analytically gi-
ven by [2,10]:

< p ′|tR
c (

k2

mp
)|p >→ e2

2π2

1+ I(x)
(p ′ − p)2

(12)

where

I(x) =
1
x

[2F1(1, iη; 1+ iη;
x + 1
x − 1

)

− 2F1(1, iη; 1+ iη;
x − 1
x + 1

)] , (13)

x2
= 1+ (p′2−k2)(p2−k2)

k2(p′−p)2 and 2F1 is the hypergeometric func-
tion. Thus we are able to compare results of solving Eq.(8)
with prediction (12) and check for which value of the scree-
ning radius the screening limit is achieved. This is pre-
sented in Fig. 5, where both parts of the off-shell screened
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Fig. 4. The same as in Fig. 3 but forθ = 5◦.

Coulomb t-matrixtR
c (p, p′, x) at Elab

p = 13 MeV and fixed
p andx values are shown as a function ofp′ and compared
with pure Coulomb result. The smallR-valuesR = 20 fm
andR = 60 fm are insufficient, especially for the imaginary
part, to reach the pure Coulomb off-shell values. However
for bigger R-values, aboveR ≈ 100 fm, tR

c (p, p′, x) ap-
proaches the screening limit. At this energy forp′ = k =
0.396 fm−1 one reaches the half-shell point where a discon-
tinuity of t matrix exists. In this ranges ofp′ bigger values
of R are needed.

4.2 The half-shell elements

Let us turn now to the half-shell pure Coulomb t-matrix,
which is analytically given by [15].

< p ′|tR
c (

k2

mp
)|k >→ C0eiσ0

kη
π2q2

(
p′2 − k2

q2
)iη , (14)

whereq = p ′−k is the momentum transfer,σ0 = Γ(1+ iη)
is the pure Coulomb phase shift andC2

0 =
2πη

exp2πη −1 is the
Coulomb penetrability. The direct comparison of this limit
and the screened Coulomb half-shell t-matrix atElab

p =

13 MeV is shown in Figs. 6 and 7 for the real and the imag-
inary part oft, respectively. On both figures, in upper row,
discrepancy due to the oscillating factoreiΦR(k) [3–5] is
seen. The renormalization oft matrix moves the screened
half-shell t-matrix directly to its pure Coulomb limit (see
lower row of Figs. 6 and 7). Especially the imaginary part
of the half-shell screened t-matrix is affected by renormal-
ization. The screening radii aboutR = 60 fm are generally

0.0 0.5 1.0 1.5 2.0

p’ [fm
-1

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e 

T
 [M

eV
 fm

3 ]

0 0.1 0.2 0.3 0.4 0.5

p’ [fm
-1

]

-0.30

-0.25

-0.20

-0.15

-0.10

Im
 T

 [M
eV

 fm
3 ]

0.36 0.38 0.4 0.42
0.75

0.8

0.85

0.9

0.95

1

Fig. 5. (color online) Limiting behaviour of the real (upper) and
the imaginary (lower) parts of the off-the-energy-shell screened t-
matrix tR

c (p, p′, x) at Elab
p = 13 MeV, p = 0.36 fm−1, andθ = 45◦

as a function of thep′ momentum forn = 4 and different values
of the screening radiusR: R = 20 fm (dotted line),R = 60 fm
(dashed-dotted line),R = 120 fm (dashed line),R = 180 fm (thin
solid line), R = 500 fm (thick solid line). The pure Coulomb
off-shell result of Eq.(13) is given by thick dots. The half-shell
situation is reached atp′ = k =

√

mpEc.m. = 0.396 fm−1. In the
inset a discontinuity develops ifp′ approachesk from below or
above.

sufficient to reach the pure Coulomb t-matrix. Although,
for smaller angles one has to go to even biggerR’s.

4.3 The on-shell elements

The on-shell elements of the screened Coulomb t-matrix,
obtained from Eq.(8) atElab

p = 13 MeV are given in Figs. 8
(the real part) and 9 (the imaginary part). In the upper rows
the results before renormalization are shown. In addition to
them also the pure Coulomb amplitude is shown and rep-
resented by a thick solid line. A necessity for renormaliza-
tion is clearly seen, especially for the imaginary part oft.
For the on-shell elements the renormalization oft-matrix
is done using the oscillating factore2iΦR(k) [3–5]. Then the
screened on-the-energy-shell t-matrix elements approach
in the limit R → ∞ the Coulomb scattering amplitude
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Fig. 6. (color online) The real part of the half-the-energy-shell
screened t-matrixtR

c (k, p, x) before (upper row) and after (lower
row) the renormalization. The proton lab. energy isE = 13 MeV,
andθ = 45◦. The screening potential was taken withn = 4 and
different values of the screening radiusR: R = 20 fm (dotted
line), R = 60 fm (dashed-dotted line),R = 120 fm (dashed line),
R = 180 fm (solid line) andR = 500 fm (thick solid line) The
pure Coulomb half-shell result of Eq.(14) is given by thick dots.

AC(θ) [5,16]

tR
c (k, k, x)|renormalized ≡ e−2iΦR(k)tR

c (k, k, x)

→ − 2
mp

AC(θ)
(2π)2

=
2

mp(2π)2

mpe2

4k2

e−iηln(sin2 θ
2 )

sin2 θ
2

. (15)

Applying this procedure indeed shifts unrenormalized
t-matrix to the pure Coulomb result. This is exemplified in
the lower rows of Figs. 8 and 9. At this energy (Elab

p =

13 MeV) the screening rangeR = 120 fm is sufficient to
obtain screening limit at most scattering angles, only for
very small ones the bigger values ofR are required.

5 Summary

We solved numerically the 3-dimensional LS equation for
a screened Coulomb t-matrix with the exponential screen-
ing using different values of screening parameters. The re-
sulting t-matrix taken on-shell together with a finite num-
ber of partial wave projected t-matrices generated by the
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Fig. 7. (color online) The same as in Fig. 6 but for imaginary part
of the half-the-energy-shell t-matrix.

screened Coulomb force and the nuclear force leads to cor-
rect pp observables. No renormalization is required in that
case.

We also investigated numerically the screened 3-dimen-
sional Coulomb t-matrix. The limits of the off-shell, half-
shell and on-shell screened t-matrices were compared to
the pure Coulomb values, which are known analytically.
Our study confirms analytical results for the pure Coulomb
force and allows to give the values of screening radii for
which the screening limit is achieved. The resulting 3-di-
mensional screened Coulomb t-matrix is the important com-
ponent of three-body calculations [6,7] involving Coulomb
interaction.
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