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Abstract. We study the four-nucleon force contribution to the binding energy of 4He in the framework of chiral
nuclear interactions. The four-nucleon forces start to contribute in the next-to-next-to-next-to leading order. We
discuss our power counting expectations for the size of the 4N contribution and then explicitly calculate it in
first order perturbation theory. Our expectations agree with the results. Quantitatively, the contribution might be
significant. This motivates further studies in more complex nuclei.

1 Introduction

One of the main goals of nuclear physics is the understand-
ing of the properties of nuclei based on nuclear interac-
tions. It is generally accepted that the Hamiltonian for a
nuclear system is driven by nucleon-nucleon (NN) pair in-
teractions, for which highly accurate models have been de-
veloped [1-3]. But the application of these models to light
nuclei [4-8] has shown that NN interactions alone are not
able to provide a sufficiently accurate description of the
data. This led to the conclusion that three-nucleon forces
(3NF’s) are required to describe nuclei based on micro-
scopic interactions 1. Models for three-nucleon (3N) inter-
actions exist starting with the venerable Fuijita-Miyazawa
force [9]. Such models have been refined by repulsive short
distance pieces [10] or implementing constraints by n-nu-
cleon (nN) scattering [11,12]. Unfortunately, due to the
phenomenological character of NN interactions, none of
these models is based on a common footing with any of
the modern accurate NN interactions 2. This is however
a basic requirement of any combination of NN and 3N
forces since both cannot be defined independently of each
other[15]. Nevertheless, brute-force combinations of such
NN and 3N force models, that are tuned to at least describe
the 3H binding energy, give quite reasonable results for 3N
scattering observables [16] and binding energies of light
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1 The term microscopic interactions refers to interactions
among nucleons as basic constituents of nuclei.

2 For an attempt to derive NN and 3N forces from a unified
approach see [13,14].

nuclei [4-6,17,8]. But at the same time, such results show
deficiencies that indicate that part of the nuclear Hamilto-
nian is not understood sufficiently well.

A systematic scheme to derive the nuclear Hamiltonian
is based on chiral perturbation theory (ChPT). Here the ap-
proximate but spontaneously broken chiral symmetry of
the QCD Lagrangian is implemented in an effective field
theory in terms of nucleon and pion fields. Chiral symme-
try constrains the possible couplings of these fields, espe-
cially for the pions being the pseudo-Goldstone bosons re-
lated to the spontaneous symmetry breaking. Due to these
constraints, the Lagrangian and all diagrams can then be
expanded in terms of j-, where Q is a typical momen-

tum of the considered process or the pion mass and Ax
is the chiral symmetry breaking scale of the order of the
p meson or nucleon mass. For low momenta and systems
with nucleon number A = 0 or 1, this leads to a pertur-
bative expansion of the relevant amplitudes. For A > 2,
this expansion cannot be perturbative, since bound states
(the nuclei) exist. Weinberg recognized that diagrams with
purely nucleonic intermediate states, so called reducible
diagrams, are responsible for this non-perturbativeness. He
therefore suggested to expand a potential (the sum of all
irreducible diagrams) using the standard power counting
of ChPT. Reducible diagrams can then by summed up to
infinite order by solving the Schrdodinger equation based
on such a potential [18,19]. This explains naturally why
NN forces are driving the nucleon Hamiltonian and more-
and-more-nucleon interactions become less-and-less im-
portant. It also enables us to derive NN and more-nucleon
interactions within the same framework.
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Fig. 1. Non-zero contributions to class I of 4NF diagrams o ¢5,.

It turns out that leading order (LO, ("), next-to-leading
order (NLO, (%), next-to-next-to-leading order (N’°LO, (P)
and next-to-next-to-next-to-leading order (N°LO, Q") terms
of the chiral expansions are required to obtain NN inter-
actions that have an accuracy comparable to the modern
phenomenological ones [20,21]. The leading 3NF’s appear
in N°LO [22,23], some parts of the subleading terms have
been formulated [24] but not applied yet. The leading four-
nucleon force (4NF) is of order (* and has been derived in
[25,26]. In these proceedings we report on the application
of this ANF, namely a calculation of its contribution to the
binding energy of “He. This work goes beyond our first
estimate of this 4ANF contribution [27], since we now take
the *He wave function in its full complexity into account.
This is especially important for a reliable estimate of short
range contributions of the 4ANF.

We start introducing the chiral 4NF in Sec. 2. Then
we turn to the more technical aspects and define the in-
gredients of the actual calculations in Sec. 3. In Sec. 4,
we discuss our power counting expectations for the size of
the 4NF. The numerical results have been obtained using a
Monte-Carlo approach that is introduced in Sec. 5. The re-
sults are given in Sec. 6, which leads us to the conclusions
and the outlook in the final section.

2 Chiral interactions and 4ANF's

Four-nucleon interactions have already been discussed in
the 1980’s [28,29]. At the time, the conclusion was that
the contribution is probably small enough to be neglected.
Given that 3NF’s were known to be much more important
but much less understood at the time than today, it was rea-
sonable to neglect the 4NF’s based on the results obtained.
But it is timely to reconsider this part of the interactions
now for two reasons. Firstly, we are now in position that
much more accurate nuclear structure calculations are pos-
sible, the aim being to predict the masses even of drip line
nuclei. For such an endeavor, the accuracy of the underly-
ing forces needs to be much higher and 4NF’s might be-
come quantitatively important. Secondly, we have now a
systematic scheme to derive consistent NN, 3N and 4N in-
teractions based on chiral perturbation theory. Therefore,
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Fig. 2. Non-zero contributions to class Il of 4NF diagrams o g,.
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Fig. 3. Non-zero contributions to class IV of 4ANF diagrams o
4
g4 Cr.

Fig. 4. Non-zero contributions to class V of 4NF diagrams o
2
g A CT.

we are now in the position to derive the complete leading
contribution of 4NF’s consistently to the chiral NN and 3N
interactions.

Here, we restrict ourselves to the effective theory with-
out explicit 4 isobar degrees of freedom. We stress that
due to the strong coupling of the #N system to the 4 and
the small difference of the nucleon and 4 mass, the inclu-
sion of A might be advisable. For the NN and for 3NF’s,
this has been done already (see e.g. [30-33]). The results
confirm the importance of 4’s in nuclear interactions. For
the 4NF, the contribution due to A’s was estimated in [34]
based on a phenomenological approach. This study indi-
cated that the A contribution to 4NF’s is small. It will be
interesting to look at this estimate again based on chiral
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Fig. 5. Non-zero contributions to class VII of 4NF diagrams k
g2ACr

interactions and to confirm that this conclusion persists in-
dependent of the choice for cutoffs, but this is beyond the
scope of this study.

Neglecting A’s and based on the power counting of
Weinberg, one only gets NN interactions in LO (Q0) and
NLO (Q2) and additional NN interactions and first 3NF’s
inN2LO (Q3). Up to this order the complete nuclear Hamil-
tonian has been derived. The Q4 terms (N3LO) have been
completely formulated for the NN force and they proved
to be quantitatively important for an accurate description
of NN data [20,21] up to the pion production threshold.
At this point, parts of the subleading 3NF’s have been for-
mulated [24], but they have not been applied yet. The ap-
proach has been reviewed in [35,36]. For the explicit ex-
pressions of the NN and 3N forces, we refer to Ref. [37]
where all results have been derived in the same scheme
of unitary transformations that was used for the 4NF’s ap-
plied here. The approach is well suited to end up with
standard nuclear potentials that can be directly applied to
few-nucleon systems since all interactions are manifestly
energy-independent. Since the same approach was used for
the NN and 4N force, it is insured that both are consistent
to each other.

Additionally to the Q4 NN and 3NF’s, there are also
first ANF’s in this order. The derivation of the complete set
of these terms has been done in Refs. [25,26] and showed
that the leading 4NF does not only consist of pion ex-
change pieces, but also of short range pieces that are di-
rectly linked to corresponding short range pieces of the
NN interaction. It is useful to classify the contributions ac-
cording to their dependence on the axial-vector coupling
constant gA and the low energy constants (LEC’) Ct. In
Refs. [25,26] eight classes have been identified. Some of
the contributions are zero, therefore only class |  gA),
class Il « gA), class IV (k gACt),classV (k gACt),
and class VII « gA CZ) terms have to be considered. In
Figs. 1to 5, we summarize the topologies of the diagrams
contributing to the 4NF. The diagrams shown visualize ex-
pressions that have been derived algebraically. Note that
some of the diagrams look as if they are reducible itera-

200

100

CS LO
CT LO
CT NLO

CS NNLO

A [fm-1]

Fig. 6. Cutoff dependence ofthe LO LEC’s CSand CT for various
orders of the chiral interaction.

tions of NN or 3N interactions. We however only consider
the irreducible parts here, which naturally separate in the
expressions derived. To arrive at the final expressions, it is
also mandatory to study 3N forces consistently. It turns out
that the requirement that 3NF’s are renormalizable further
constrains the expressions for the 4NF’. For details, we
refer to Ref. [26] where also the final expressions of the
4NF can be found.

As mentioned earlier, there is a relation of the short
range part of the leading 4N and LO NN interactions. The
LO NN interaction consists of the 1n-exchange and two
contact interactions

2
9A o4 qo2 g

Vio = - .
° 2N q2+ing@

Tiwr2+ Cs + Ct(T\ m0 2

Here, q is the momentum transfer from one nucleon to the
other and o, (t) are Pauli matrices acting in spin (isospin)
space of nucleon i. The strength of the 1n exchange is de-
termined by the axial-vector coupling constant gA and the
pion decay constant Fn = 92.4 MeV. The strength of the
contact terms is parameterized by the LEC’s Cs and Crt,
which are determined by a fit to NN scattering data and/or
the deuteron properties. Interestingly, parts of the 4NF de-
pend on Ct stressing the strong relation of NN and 4NF’s
and the need for consistent combinations of NN and more-
nucleon interactions.

Fortunately, the strength of the 4NF is completely de-
termined by LEC?’ that also appear in the leading NN in-
teraction. Our estimate below will therefore be completely
parameter independent.

The nuclear interaction needs to be regularized in or-
der to obtain a well-defined Schrodinger equation. This is
usually done by multiplying the potential matrix elements
with a cutoff functions, e.g. exponentials

Mptp) N oexp(t (M) k(p™>p) exp(_(a) )’
The cutoff functions dependent on the relative momenta of
the nucleons (here p and p') and a cutoff A. The power n
is usually chosen between 4 and s. Below we will show
leading order results for A = 2to 7 fm-1 and higher order
results for A = 500 to 600 MeV.

As can be seen from Fig. 6,the Cs and Ct are strongly
cutoff dependent. From naturalness, one would expect that
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Table 1. BE's £(*He) and E(*He) for *He and *He for selected
phenomenological models and LO,NLO and N?LO chiral inter-
actions compared to experiment. For chiral interactions, the cut-
off dependence is indicated given the minimal and maximal bind-
ing energy obtained in our calculations. All energies und the cut-
offs are given in MeV.

interaction E(He) E(*He)
AV18+Urbana-1X -1.72 -28.5
CD-Bonn+TM99 -1.74 -28.4

LO 54...-11.0  -15.1...-39.9
NLO -6.99...-7.70 -24.4...-288
N2LO 772 ...-1.81  -27.7...-28.6
Expt. 772 283

Cs and Cy are of the order of 100 GeV~2. For Cs, this nat-
uralness estimate holds for most cutoffs and orders with a
few exceptions. Such exceptions can be linked to the ap-
pearance of spurious bound states in the NN system [38].
Generally, the Cs;r for such A can be large, but their con-
tribution to interactions are nevertheless natural, since the
short distance wave function is suppressed for such A. Con-
trarily, Cr is much smaller than the naturalness estimate.
This has been observed already in [39] and can be traced
back to the approximate Wigner symmetry of nuclear in-
teractions. It will be interesting to study the importance of
terms of the 4NF proportional to Cr below.

3 ‘He wave functions

We are going to estimate the 4NF contribution in first or-
der perturbation theory. For such an estimate the expecta-
tion value of the relevant operators with respect to the *He
wave function has to be calculated. Therefore, we would
like to summarize briefly which wave functions enter our
calculations.

Although consistent results can only be obtained based
on chiral nuclear interactions, we have also performed cal-
culations based on the modern phenomenological interac-
tions AV18 [1] and CD-Bonn [2]. In both cases, we aug-
ment the NN interaction by phenomenological 3NF’s based
on 2z exchange, which have been adjusted to the *H bind-
ing energy and, for Urbana, also to nuclear matter density.
For details on this adjustement see Refs. [5,40].

For studying the cutoff dependence of the expectation
values, it is also useful to study the 4ANF for the leading
order wave functions. Here, we follow the scheme of
Ref. [38]. However, we only consider s-wave interactions,
so that only two LEC’s need to be adjusted, which we fit
to the deuteron binding energy and the 'Sy phase shift at
1 MeV laboratory energy.

Our most consistent calculations are based on chiral
nuclear interactions of order NLO and N2LO. Here, we ap-
ply the interactions of Ref. [21] which have been derived
in the same framework as the 4NF. This guarantees consis-
tency of both parts of the interaction. In order N°LO also
the leading 3NF’s are included. The relevant LEC’s have
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been adjusted to the *H binding energy and the nd doublet
scattering length as outlined in [23].

In order to obtain the wave functions, we solve Yaku-
bovsky equations in momentum space in a partial wave
basis [5]. For the representation of the wave function, we
take angular momenta up to / = 6 into account. This re-
quires a large number of partial wave channels of the or-
der of 1000 for the representation of the wave functions.
For the Monte Carlo scheme described below, we need
to transform the wave function from this partial wave ba-
sis to a basis depending on three-momenta and individual
nucleon spin/isospin projections. This transformation has
been implemented quite efficiently, still it takes the bulk of
the computational resources.

We summarize the binding energy results in Table 1.
One can see that the binding energies are well described for
the phenomenological and chiral N?LO interactions. Due
to the correlation of the 3H, *He and *He binding energies,
this is not surprising. At LO and NLO, the binding energy
of *H cannot be adjusted, so that the dependence is still
rather strong. The chiral expansion of binding energies is
generally slowly converging, since the cancelation of ki-
netic and potential energy enhances small contributions to
the interaction.

4 Power counting estimate

Before actually doing an explicit calculations for the 4NF,
we would like to estimate its contribution based on gen-
eral power counting arguments and previous experience.
Although potential energies are no observables, it is useful
to estimate higher order contributions to the binding en-
ergy based on the expectation values of the NN potential,
since the chiral expansion is performed for this potential.
Since typical momenta in nuclei are of the order of the pion
mass, the small scale of the expansion is usually assumed
to be of this order. There are some discussions on the large
chiral symmetry breaking scale. Whereas for purely pio-
nic processes, loop contributions can be well estimated as-
suming A, = 4nf; = 1 GeV, this is probably not a valid
choice for processes involving nucleons. Pion production
is not explictly included into the chiral interactions and the
momentum scale associated with such processes is of the
order of 400 MeV. At the same time, the momentum cutoff
of higher order chiral interactions is in the same order of
magnitude. Therefore, we use this value for our estimate
of higher order contributions. The expansion factor then
becomes AQ ~ (.35.

With thXis choice, we can estimate the 3NF contribution
to the binding energy. Since it is of order (®, we expect
that the 3NF contributes 4 % of the potential energy to the
binding energy. In Table 2, we present the expectation val-
ues of the NN and 3N interactions for four different calcu-
lations of the *He binding energy. The N2LO calculations
coincide with the ones we will use for the evaluation of the
ANF. Additionally, we show results for N3LO calculations
based on the chiral interactions of Ref. [20]. Note that also
here the 3NF is only up to order N?LO.
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Table 2. BE’s E and expectation values of the NN ((Vnn)) and 3N ((V3NF)) interactions for 4aHe. All energies and the cutoffs are given in
MeV. “DR” indicates that loops for the chiral interaction of Ref. [20] are regularized using dimensional regularization. The experimental

BE is -28.30 MeV.

interaction AlA E
N2LO 450/700  -27.65
N2LO 600/ 700 -28.57
N3LO-3NF-A  500/DR -28.27
N3LO-3NF-B  500/DR  -28.24
0
LO-LAM=7 wf Class IV contribution
0 6

run

Fig. 7. 4NF contribution to the binding energy of 4He. Ten in-
dependent MC results are shown for the class IV contribution
based on the LO wave function with A = 7 fm-1. Error bars are
estimates for the single run standard deviations. The line is the
average of all ten runs. The band indicates the standard deviation
of the combined runs.

We find that the expectation values of the 3NF is indeed
of the order of 4 %. This seems to back our very conser-
vative choice for Ax. We note that the inclusion of.d’ into
the effective theory shifts part of the 3NF to NLO. Here,
we strictly stick to ~-less ChPT and estimate the higher
order contributions based on Ax = 400 MeV.

The ANF is order Q4. Based on the expectation values
of NN potential given in the table, we can estimate that the
4NF contributes approximately 1 MeV to the binding en-
ergy. Such a contribution is not negligible in nuclear struc-
ture calculations. This estimate is also in line with the ob-
servation that an accurate description of NN data requires
potentials up to order N3LO. It is therefore necessary to
make an explicit calculation to get a more reliable estimate
of its contribution.

5 Numerical technique

In this section, we want to introduce briefly the numerical
method used for the evaluation of the pertinent integrals.
Since we base our estimate of the 4NF contribution on first
order perturbation theory, we need to calculate the expec-
tation value of the 4NF with respect to 4He wave functions.
This leads to integrals of the form

w =7
aa’'

<AP12P3q4«> <... |V4|...) <p12'P3'q4'a |W)

f dpudp3dqgd4dp\2dp'sdqs

(Vnn) <wmf)  <\vanf)/( Vnn)
-84.56 -1.11 1.3%
-93.73 -6.83 7.3 %
-99.45 -4.06 41 %
-98.92 -7.10 72 %
0 2 8

run

Fig. 8. Same as Fig. 7 for a calculation of the class | contri-
bution for the NNLO wave function with A = 550 MeV and
A =600 MeV.

d pud p3d g4d p[a2d p3d g4

w(P12, P3, g4; Pl2,p 3, q4)
<W|pl2P3g4a) <... |V4l...) <p12'p3'g4 'a'|W)

w(p12,p3,04;p12,p3, g4
(1)

Here, pi2p3q4 (pi2'p3'q4') are incoming and outgoing
Jacobi momenta in the 4N system. The 4NF matrix ele-
ment is <..|V4|...) and depends on these momenta and
the incoming and outgoing spin/isospin channels a and
a (labeling all possible combinations of spin/isospin pro-
jections of the four nucleons). The 4He wave functions
<p12 'p3'qa4'a’|W) are also given in terms of the Jacobi mo-
menta and a and w is a weight function to be discussed
below.

We have not performed a partial wave decomposition.
Therefore, the dimensionality of the integral is much to
high to be calculated with standard techniques. A Monte
Carlo (MC) scheme is much better suited for this purpose.
We found that an importance sampling similar to the Metro-
polis algorithm [41] is required to keep the computational
needs small and increase the accuracy.

Usually such an importance sampling is guided by the
square of the wave function. In configuration space, this
quantity is perfectly suited as a weight function since it
is then automatically normalized to one at least as long
as the operators are local. For momentum space, the struc-
ture is more complicated, since the integrals require weight
functions with higher dimensionality as in configuration
space. This implies that a simple square of the wave func-
tion is not useful for the importance sampling anymore.
This problem could be solved by performing part of the
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integrals using standard methods as has been successfully
done in [42]. We found this approach less practical in our
case, since the three- and four-nucleon operators would re-
quire to perform high dimensional integrations using stan-
dard integration methods.

Our solution was to give up weight functions based
on the wave functions of the system, but choose a ratio-
nal ansatz instead. The parameters of the ansatz were then
adjusted so that the standard deviation in test cases was
minimized. In this way, we were able to improve the ac-
curacy sufficiently. At the same time, the weight function
could be analytically normalized to one so that the calcu-
lations became feasible.

E.g. we choose for the importance sampling for inte-
grals of the form of Eq. (1) a weight function depending
on the six integration variables p; = p12, P3, qu4, Py, P3
and ¢

(=3 -2 -1 5"
= : @)
lj[ 8n ( it Cpi)

For simplicity, the ansatz only depends on the magnitude
of the momenta. With the parameters C,, and r the shape
of the weight functions can be influenced. The ansatz guar-
antees (for large enough r) that the weight function is nor-
malized to one.

In practice, we used a Mathematica script to generate
the numerical expressions of the potential matrix elements
for each afa’ reliably. The resulting code lines could be
directly included in a FORTRAN code evaluating the high
dimensional integrals given above.

In order to check the statistical character of our MC re-
sults, we performed for each quantity 10 independent cal-
culations. Figs. 7 and 8 summarize the results of two rep-
resentative sets of calculations. The error bars are standard
deviations of the single runs. The line is the average of all
the ten runs and the shaded region indicates the standard
deviation of the average. It is reassuring that the approxi-
mately 2/3 of the single runs overlap with the average in
both cases within one standard deviation. This is a non-
trivial confirmation of the statistics of the runs.

With this technique, we were able to estimate the 4ANF
contribution for the different interactions reliably. We are
now in the position to discuss the results in the next section.

w(P{2> D3> 4> P12, D3, Q1) = (Phys Phs Gy P12, P> 1)
)

6 Results

We start the discussion of the results based on LO wave
functions for which we were able to investigate a large
range of cutoffs. Some exemplary results are shown in
Figs. 9 and 10. The actual contribution of the two shown
parts of the 4NF are strongly cutoff dependent. This is not
surprising and reflects the fact that the potential is not ob-
servable. Even for the large cutoff the 4ANF contribution is
stable and remains below or around 1 MeV. This is not
only true for these two examples, but also for all the other
classes of diagrams.

05006-p.6

0.4

02

-02

0.4

(VANE)) [MeV]

Class I contribution
-06

-0.8

s
A [fm™!]
Fig. 9. Cutoff dependence of the class I contribution to the 4NF

for the O wave functions. Error bars are the statistical errors of
the MC evaluation.
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04 | Class IV contribution
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Fig. 10. Cutoff dependence of the class IV contribution to the

ANF for the LO wave functions. Error bars are the statistical er-
rors of the MC evaluation.

For the larger cutoffs, it is not necessarily true that the
ANF is perturbative. For 3NF’s, we know that first order
perturbation theory is insufficient for some higher cutoffs
[43] or for some phenomenological models [44]. There-
fore, the large cutoff results have to be taken with some
care, although we have no indication that perturbation the-
ory is not appropriate for these estimates.

Surprisingly, we find a rather large contribution from
class IV. This class depends on Cr, which generally is
smaller than natural due to Wigner symmetry. But our re-
sults for the expectation values in LO for class IV is not
unnaturally small. In fact, as can be seen in the figures, it
is larger than class I contributions for most cutoffs. At this
point, we do not fully understand this enhancement of the
LO results.

The complete final results are depicted in Fig. 11. We
show results for the different classes separately. The bars
indicate the range of the results for different cutoffs (or
for AV18 and CD-Bonn for the phenomenological mod-
els). For the chiral interactions, the parameters of the 4ANF
are completely fixed by the NN interaction. For the phe-
nomenological ones, the strength of the contact pieces was
fixed arbitrarily to C7 = 10 GeV~2. This choice is below
the naturalness estimate and is meant to take Wigner sym-
metry into account. For completeness, we also show the
sum of all contributions.

The phenomenological and LO estimates tend to be
larger than the ones for NLO and N?LO interactions. In
both cases, we observe that class IV contributions are larger
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Fig. 11. Expectation values of the 4NF for various chiral and phe-
nomenological interactions. Contributions of different classes are
shown separately. The width of the bars indicates the dependence
on the cutoff for the chiral interactions and the band spanned by
AV18 and CD-Bonn for the phenomenological interactions.

than expected by the size of Ct. We also note that the CD-
Bonn and AV18 results are close to each other, although
the LO results are strongly cutoff dependent. This is an
unusually behavior, since generally cutoff dependence for
LO results shows up as astrong model dependence for phe-
nomenological calculations. It has to been seen in future,
whether this dependence can be traced back to the cutoff
dependence of the binding energy.

NLO and N2LO results are more interesting since for
these the NN interactions are strictly consistent with the
4NF and the binding energy is already described reason-
ably. The results for these interactions are smaller. As ex-
pected, the class IV, V and VI contributions are suppressed
because of Wigner symmetry. Individually, the class | and
class Il contributions are of the order of 500 keV. The sum
of both is smaller (around 300 keV) since both parts can-
cel each other partly. We also note that for some cutoffs
the 4NF acts attractively or repulsively. We again stress
that the potential is not observable. Therefore, we cannot
expect results to be independent of the cutoff.

7 Conclusions and outlook

In summary, we have studied the 4NF contribution to the
binding energy of 4He in the framework of chiral perturba-
tion theory. To this aim, we made use of a MC technique
in momentum space that enabled us to calculated the high
dimensional integrals required for the evaluation of the ex-
pectation values. The scheme allows one to generate the
most complex parts of the code using Mathematica. This
way, the expressions can be reliably transferred into our
FORTRAN codes.

By now it is clear that 3NF’ give important contri-
butions to the binding energies of nuclei. Based on the
power counting, 4NF contributions might still be signifi-
cant. We found by explicit calculation that the 4NF con-
tribution is somewhat smaller than the power counting es-
timate of 1 MeV at least when the higher order chiral in-
teractions are used. The individual contributions of class
IV to VII are suppressed due to Wigner symmetry, so that
only class | and Il contributions are non-negligible. For

4He these two classes cancel each other in parts so that
the complete contribution for this case is below or up to
approximately 300 keV in magntitude.

Although this would probably be considered as a neg-
ligible contribution, some care has to be taken before final
conclusion on 4NF’s can be made. Firstly, the phenomeno-
logical interactions tend to lead to larger 4NF. But most
importantly, the 4NF contribution could be larger for nu-
clei with a different spin/isospin structure than 4He. In this
case the class | and Il contributions might add construc-
tively implying a visible contribution of 4NF’s. This has to
be studied in more detail in future.
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