Eur. Phys. J. A (2011) 47: 48
DOI 10.1140/epja/i2011-11048-9

THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article — Theoretical Physics

The Tucson-Melbourne three-nucleon force in the automatized

partial-wave decomposition

R. Skibiriski’*?, J. Golak!, K. Topolnicki', H. Witala', H. Kamada?, W. Glockle?, and A. Nogga*

L

D-52425 Jiilich, Germany

M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krakéw, Poland

Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

Institut fiir Theoretische Physik II, Ruhr-Universitdt Bochum, D-44780 Bochum, Germany

Forschungszentrum Jiilich, Institut fiir Kernphysik, Institute for Advanced Simulation and Jiilich Center for Hadron Physics,

Received: 18 January 2011 / Revised: 23 February 2011

Published online: 5 April 2011

© The Author(s) 2011. This article is published with open access at Springerlink.com

Communicated by M.C. Birse

Abstract. A recently developed procedure for a partial-wave decomposition of a three-nucleon force is
applied to the 7-7, m-p and p-p components of the Tucson-Melbourne three-nucleon potential. The resulting
matrix elements for the 7-7 and 7-p components are compared with the values obtained using the standard
approach to the partial-wave decomposition, in which the 7-p expressions for the matrix elements are also
derived and presented. Several numerical tests and results for the triton binding energy and the correlation
function prove the reliability and efficiency of the new method.

1 Introduction

The Tucson-Melbourne (TM) three-nucleon force (3NF)
[1-4] is an important model of the three-nucleon (3N) in-
teraction. It consists of three parts stemming from ex-
changes of -7, m-p and p-p mesons. The main ingredient
of the TM force, the meson-nucleon scattering amplitude
with the off-shell mesons, was derived using the current al-
gebra techniques. This was done in [1] and improved in [3]
for the 7-m part. The 7-p and p-p contributions were de-
rived in [2,4]. In [5] the structure of the 7-7 part of the
TM 3NF was revisited to achieve a consistency with the
chiral symmetry and the modified force is known as the
TM’ model.

The effects of all terms on the triton binding energy
were studied in [6]. It turned out that the 7-p force acts
repulsively for the 3H contrarily to the 7-7 interaction and
combining them leads, for the most of the considered NN
potentials, to the *H binding energy close to the exper-
imental value. The p-p force has only a small influence
on the triton binding energy. A similar behaviour was ob-
served for scattering observables in the three-nucleon sys-
tem [7]: the largest effects came from the dominant m-m
part and the influence of the m-p part was smaller and
in the opposite direction. The p-p contribution proved to
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be much smaller and practically negligible. However, the
results of refs. [6,7] were based on partial waves restricted
to the total angular momenta in the two-nucleon subsys-
tem j < 2. Thus conclusions of [7] are valid only in a
low-energy domain of the three-nucleon continuum. For
higher energies, where more partial waves are required to
achieve convergence, only the 77 part of the TM force
was used (see, e.g., [8-10]). While the inclusion of this

main component of the TM 3NF improves the description
of many scattering observables, some serious discrepancies
with data remain and they become larger at higher ener-
gies. One of the possible explanations for this disagree-
ment is a lack of shorter-range parts of the 3NF in those
calculations, what calls for a reliable and fast method to
obtain matrix elements for all components of the TM force
in higher partial waves.

Recently, we have proposed a novel, automatized way
to perform a partial-wave decomposition of any two- and
three-nucleon potential [11]. This approach makes use
of a software for symbolic calculations to generate the
part of the code which is specific for a considered force
model. More precisely, in this way we calculate exactly the
isospin- and spin-momentum parts of the nuclear inter-
actions and generate a corresponding FORTRAN (or C)
code. That momentum-dependent output forms an inte-
grand for further five-dimensional numerical integrations.
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In this paper we present the results of applying that
new scheme to the original TM 3N force. They confirm
the feasibility and efficiency of our method and its nu-
merical implementation. The existence of such a reliable
procedure is especially important in view of available and
forthcoming results from the chiral perturbation theory
(xPT) [12] for 3N forces at higher orders of the chiral
expansion. A big number of different momentum-spin-
isospin structures contained in those interactions requires
a safe and automatized method to perform partial-wave
decompositions, which is guaranteed by our method. Fur-
thermore, our scheme avoids the application of partial-
wave—decomposed permutation operators when dealing
with products of 3NFs and permutation operators as they
are often required, e.g., in 3N Faddeev equations. Such an
application is numerically demanding because it requires
a huge number of partial waves. Thus, again an efficient,
fast and precise method is needed.

Our novel scheme of an automatized partial-wave de-
composition (aPWD) is described in sect. 2. Results and
additional tests for our numerical realization are presented
in sect. 3 and conclusions are given in sect. 4. The stan-
dard PWD of the 7m-p component of the TM 3NF is given
in the appendix.

2 Automatized partial-wave decomposition

The 3NF, Vi3, is an indispensable ingredient in a theoret-
ical description of the few-body systems. It can be always
written as a sum of three terms

Vigg =V + V& 4 v6), (1)

where each V() is symmetrical under the exchange of nu-
cleons j and k (i,7,k = 1,2,3, i # j # k). Such a splitting
in the case of the m-7 exchange TM 3NF corresponds to
the possible choices of the nucleon undergoing off-shell 7N
scattering.

The 3NF typically enters the dynamical equations via
its part V(. In the case of the three-nucleon bound
state, the Faddeev component ¢ fulfils the following equa-
tion [13]:

¥ = GotPp + (14 Got)GoV IV (1 4 P)ep, (2)

where Gy is the free 3N propagator and ¢ is the two-body
t operator generated from a given nucleon-nucleon (NN)
potential through the Lippmann-Schwinger equation. The
permutation operator P = PisPs3 + Pi3Ps3 is given in
terms of the transpositions P;;, which interchange parti-
cles 7 and j. The full bound-state wave function ¥ is then
obtained as ¥ = (1 + P).

Transition amplitudes for the elastic nucleon-deuteron
scattering, U, and for the breakup reaction, Uy, are given
as [14]

U=PGy'®+PT+ VP + P)®+VI(1+ P)GT,
UO = (1 + P)Ta (3)
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where the auxiliary state T fulfils the 3N Faddeev equation

T = tP® + (1+tGo)V (1 4+ P)d + tPG,T
+(1 +tGo)VI (1 + P)G,T, (4)

with @ being the initial state composed of the deuteron
wave function and a momentum eigenstate of the projec-
tile nucleon.

Equations (2) and (4) are solved [14,15] in the mo-
mentum space using 3N partial-wave states |p, ¢, @) in the
jJ-coupling [16,15]

Ip,q.a) = ‘pq(lS)j (A;) I(jI)JMJ> ‘ (t;) TMT>,

where p and g are magnitudes of the standard Jacobi mo-
menta and « denotes a set of discrete quantum numbers
arising in the following way: the spin s of the subsystem
composed from nucleons 2 and 3 is coupled with their or-
bital angular momentum [ to the total angular momentum
j. The spin % of the spectator particle 1 couples with its
relative orbital angular momentum A to the total angular
momentum of nucleon 1, I. Finally, j and I are coupled
to the total 3N angular momentum J with the projection
M ;. For the isospin part, the total isospin ¢ of the (23)
subsystem is coupled with the isospin é of the spectator
nucleon to the total 3N isospin 7" with the projection Mrp.

Any three-nucleon force enters egs. (2)—(4) in the form
of VAU(1 + P). Therefore a partial-wave decomposition
of VU as well as V() P has to be performed. The stan-
dard approach to perform a partial-wave decomposition
of V(1 [17] is very tedious, even with improvements sug-
gested in [18], since each momentum-spin-isospin struc-
ture, which occurs in a 3NF, has to be treated separately.
In the case when a 3NF consists of a big number of such
structures, like chiral 3NFs at higher orders of the chi-
ral expansion, the traditional approach to a partial-wave
decomposition is very ineflicient and extremely time con-
suming. In addition, the application of the permutation
operator, when calculating VP, causes an additional
numerical problem, which originates from a slow conver-
gence of the V(1) P matrix elements with respect to the
number of intermediate states |a):

<p, q, O“V(l)P‘p/a q/a O/> =

/dp//p//Q / dq//q//2 Z<p7 q, Oz‘V(l)|p”, q, O//>

ol

X<p”,q”,Oé,/|P|p/,ql7O[/>. (6)

In order to calculate precisely these matrix elements, a big
number of intermediate states |a’’) is required, and, thus,
one is forced to calculate the matrix elements of the V(1)
operator for a much bigger set of o” states than actually
needed in order to get converged solutions of the Faddeev
equations.

In our new approach, called, in the following, automa-
tized partial-wave decomposition (aPWD), to get matrix
elements of V1) and V(M P, that drawback is removed
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because matrix elements of V(1) and V(U P are calculated
directly.

The starting point of our method is the observation,
that any 3N interaction and thus also its V! component
in momentum space can be written as a sum of terms in
the form

v = f(qlvq2;qB)Ospin(qlaQ27q33‘7170'2;‘73)

xoisospin(Tla T2, 73)7 (7)

where OAspm and Oisospin are the operators acting on spin
and isospin degrees of freedom, respectively, which are
built from the spin (o;) and isospin (7;) operators of indi-
vidual nucleons. Scalar factors f(q1, g2, g3) and spin oper-
ators Ospm(ql,qg,qg,o'l,ag,a';;) depend on the momen-
tum transfers g; to the nucleon ¢ which are expressed in
terms of the initial and final Jacobi momenta p, g and p’,
q’, respectively, as

=9 —q, qzz(p’—p)—%(q’—q),
a5 =0 —p) - 2 — @) = —(a1 +q2). (s)

2

For example, in the 77 part of the TM 3N force one
meets the following spin-isospin structures:

Ospin(q1,92,93,01,02,03) = (02 - q2) (03 - q3),
2) (03 q3) (g2 - g3),
2) (05 gs) ((g2)° + (g3)?),

0142 X q3,

(0'2"1
(0'2~q

Oisospin (Tlv T2, TB) = T2 T3,

iT1 cTo X T3.

Note, that not all combinations of Ospin and Oisospin ac-
tually appear in the above example.

In the first step of aPWD we calculate 3NF matrix
elements using partial-wave states |p, ¢, 5) [16] in the so-

called LS-coupling
1
(13) 7).
2 1

(9)
where the relative orbital angular momentum [ (within
the pair (23)) and A (between the pair (23) and nucleon 1)
are coupled to the total orbital angular momentum L. In
the spin space, the spin of the (23) pair is coupled with
the spin % of the nucleon 1 to the total spin S. Finally,
L and S are coupled to the total 3N angular momentum
J with the projection M ;. The index 1 emphasizes that
the spectator particle is nucleon 1. 3 describes the set of
discrete quantum numbers discussed above. The isospin
state is the same as in the basis state |p, ¢, «).

In this basis, it is easy to decouple the isospin and
spin parts from the momentum part, what leads to the

p.q, B)1 = ‘pq(l/\)L <5;> S(LS)JMJ>

1
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following form of a 3NF matrix element:

<;0’Q'(Z'>\’)L’ (#;) S’(L’S’)JMJ’ <<t’;) T g
pq(IN)L (sé) S(LS)JMJ> ‘(t;) TMT> -
[a' [aa' [ a5 [ i

Z C(L/, Sl, J; mL/,MJ —mrpr, MJ))/*,f\,’mL' (ﬁlv (j/)

mys

x> C(L, S, Jymp, My —mp, Mp)V"™ (5, 9)

mr,

1
X <<S/2> S/MJ —my,
1
<S2> SMJ—mL>

/1 !
xf(p',4d',p,q) <<t 2) T' My

xvV

Ospin (p/a q/u D, q)

X

Oisospin

(4)oue)
(10)

where

!
> CU N Lymy,my, — my,my,)

mp=—

Xi/l,ml (ﬁ) Y/\,mL—ml ((j)

Y (B, 4)
(11)

with the standard Clebsch-Gordan coefficients and the
spherical harmonics. For abbreviation we skip in (10) and
in the following the spin o; and the isospin T; operators
in the arguments of Ospin and OAZ-SOSpm operators.

The matrix element in the spin space appearing
in (10), <(S/%)S/MJ — mL/|Ospin(p,7 qlvpa q)|(5%)SMJ -
mp,), depends on the momenta g; and spin quantum num-
bers. Using a software for symbolic calculations (such as
Mathematica® [19] in our case) it is very easy to calculate
this matrix element for all combinations of spin quantum
numbers as a function of the momentum vectors gq;. To
this aim we use the Kronecker product built in Mathe-
matica, which allows us to express the spin matrix ele-
ment in terms of simple matrix operations. This is even
more straightforward in the case of the isospin matrix el-
ement, which does not depend on any additional parame-
ters. Another advantage of using a software for symbolic
calculations is the possibility to generate a Fortran (or
C) code in an automatized way. This eliminates possible
errors which can be introduced during programming of
very lengthy formulas for the spin matrix element. The
calculation of the 3NF matrix elements requires finally an
eight-dimensional integration shown in (10). In a typical
case the total isospin and its projection is conserved. We
also assume that the considered 3N force is rotationally
invariant. Then the matrix elements in (10) vanish unless
J =J and M; = M, and, additionally, do not depend
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on M ;. Thus we can calculate The reduction of the number of integrations for a simple
1 example of 3NF is numerically exemplified in ref. [11].
G, N, L', s, 8 t',I,\ L,s, S, Jt,T,Mr) = 571 The remaining summations over my,, my, and M; and

five-fold integrations can be performed for a small number
of (p,q,p’,q') combinations even on a personal computer.
However, a large number of five-dimensional integrations,
as they are needed to obtain all matrix elements needed
<p q(I'N) ( ) S'(L'S")JM, for the solution of the 3N Faddeev equations, has to be

carried out on a powerful parallel computer. Once the ma-

1 1 trix el ts (o', ¢, 3 |[VWVp,q, lculated, -
palINL (s) S(LS)JMJ> (t) T, MT> (2) l"l'X elemen S.<p q,0 .|p,q ﬁ/} a/re /ca 011 ated, recou
2 2 pling to the jI-representation, (p',q’,a/|VV|p, q, ), can

be easily performed [16]

<«

which is equal to the original matrix element of V(1)

given in eq. (10). The integrand in G(I', N/, L', s', 5", ¢/, 1, A, o (1) _
L.s,S.J,t, T, My), i.c., W', o Vi, g.0) =
l s
/dp /dq /dp/dqw 1 Z 3 S VA DRI+ )LD 2S DA ST
T My=—Jmyg, 8,8’ LSJ
C(L, 8", Jsmpy, My —mp, My Vi 5™ (8,0) U s
ML A A x/(25 +1)(2J +1) (2L +1) (28" + 1) XN L I
x Y C(L, S, J;my, My —mg, M)V (5, q) ves D ) ) ) 2
e s
X <<S/;) S/MJ —myr Ospin(plv q/ap7 q) <p q 7ﬂ |V |p’q7 > (15)
1 Now let us turn to the V() (14 P) operator and discuss
X ( ) SMy — mL> its V) Pyy Pos matrix element

Oisospin

1
xf(p' 4 ,p,q) <<t’2> T' My

(13)T0r). VO PP 5= [ [ ag /dp/dq

13) 0, ¢ B lp ) B @V D P Pas|pd) (Bdlp. . B)1. (16

is a scalar and thus does not depend on all directions of

the Jacobi momenta [20]. Therefore we are free to choose Since

for example p along the z-axis (p = (0,0, p)) and ¢4 =0

and thus we are left with five-fold integrations only P12 Pos|pd)1 = ’—;p + %tj —p— ;q~>
1

GU N, L', ¢ St 1\ L,s,S, Jt,T, My) =
;)
S— SM3>
(12) ),

gn? [ dp’ [ dg’ [ dcos(6,) Z >
Jofwl (2w o

M =—Jmp
C(L/a 5/7 Ja mrpr, MJ —mpys, MJ)yi’L)\/’mL/ (ﬁla qAI)

Spin pHsSpin
X Pyy " Py3

1S0SPIN HLSOSPIN
X Py Pos

x Y C(L,S, Jymy, My —my, My) Py Py

mr,

Xyll,;\mL( 4= (Sin(eq)v O,COS(GQ))) Z(_)S P {

Ospin(P',q',p = (0,0,p),

g = g(sin(8,), 0, cos(6,))) (s;) S M~ mL>

xf(p',q',p=(0,0,p),q = q(sin(6,), 0, cos(6y))) ”

({3

Oisospin (tg) TMT> : (14)  yhere a = 2a + 1 and Pijpm(Pi?”pm) is the part of the
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P;; operator acting in the spin (isospin) space, one gets

W', d, B v¢ P12P23|p,q51—/dp /dq /dp/dq

ZC (L', S, Jymp, My —mp, MJ)yl/L/mL/(ﬁ/ q)

my,s

xS C(L, S, Jymp, My —mp, My)VE™ (5, 4)

mr,
_ lS// — lt//
x _\s 1A 2 _\t ¢ 2
;uvss{ 3 ;()V .
L3, 1
219 4‘1, p 2‘1

1
X <<S/) S/MJ—TTLL/
L 2
XOSpin (p/, q/> -
1 1 3 1
”, SM _ / ! _ = = _ _
‘(s 2) J mL>1f(p,q7 5P+ 74P 2q>
1
= T'M "= ) TMrp) .
(1) 70| O (173 ) 7307),
Similarly, for V1) P3Py one gets

W d, BV Plstglp,qﬂ1—/dp /dq /dp/dq

ZC L/ S J mrr, MJ_mL’ MJ)y":L)\/mL/(A/ A,

mys

xS C(L, S, Jymp, My —my, M)V (5, 4)

1 S// " ~ A 1 t”
OISR ERT
t//

N|— D[~
SIS

Oisospin

N[ N|=

s/’

X << /;) S,MJ —my,

. 1 3 1
/ /_7 _ = _ -
Ospm<p,q, 5P~ 4P 2(1)
, o, 1 3
SMy—mp) f P.q,—5P— 19.P~
1

x <<t’1> My (175) o)
1 2 1

That means that the calculation of these two contributions
proceeds in the same way as calculation of the V(1) matrix
element. Only the arguments of the term OAspm have to
be changed and additional factors originating from the
recoupling of the spin and isospin quantum numbers have
to be taken into account. As for the V(1) operator also here
the eight-fold integrations can be reduced to the five-fold
ones and recalculation to |p, ¢, @) states can be performed.

It is important to note that, since our basis states
|p, q, &) are antisymmetric with respect to the exchange
of nucleons 2 and 3, egs. (20) and (21) yield the same
values for the matrix elements. This allows one to reduce
significantly the size of the codes and the required
computation time.

>
—
[N

1
2(1

(21)

Oisospin
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<o |V pge> [fim’]
4x10° T

L ] 4

2x10°F ] 2><1074

L —1-4x10

. -4

- -6x10

] 4

--8x10

2x10 L 1x10”
L B B

1x10°

p [fm’'] p ffim’']

Fig. 1. (Color online) The TM 3NF matrix elements (p’ =
0.132fm™!, ¢ =0.132fm™ %, o/|VWV|p, ¢ =0.132fm™ !, a) as
a function of the p momentum for (o', a): a) (1,1), b) (1,4),
¢) (6,3) d) (6,8). The solid (red) curve represents the full TM
3NF and the other curves show the contributions coming from
the -7 (black dotted), m-p (blue dashed) and p-p (green dot-
dashed) components.

3 Results

3.1 The TM 3NF and its 77, w-p, and p-p
components

Since the aim of this work is not to study the dependence
of the matrix elements of the TM force on its parame-
ters, in the following we use their values given in table I
of ref. [4]: @ = 1.03u~1, b = —2.62u73, ¢ = 0.91u73,
d=—0.753u~2 with g = 139.6 MeV and Axy. = 5.84.
In the numerical implementation of (10) we use the same
number of Gaussian points for each of the five angular do-
mains. It might be more efficient to relax this constraint in
future applications and to optimize the grids further. Thus
our integration method leaves room for improvement, even
if we will later demonstrate in subsect. 3.7 that it leads to
fully converged results.

The TM 3NF matrix elements calculated in the ba-
sis (5) are functions of four momentum magnitudes and
two sets of discrete quantum numbers. In figs. 1, 2,
examples of the TM force V(1) matrix elements are
shown together with its m-m, m-p and p-p components
in one-dimensional plots. In fig. 1, the matrix elements
,q,/|[V®p,q,a) for p’ = ¢ =q=0.132fm~" and for
different channel pairs (o, ) (see table 1) are shown as a
function of the momentum p. The same matrix elements
but for the momenta p’ = 0.711fm~!, ¢’ = 0.132fm~*,
and ¢ = 2.84fm~! are shown in fig. 2 again as a function
of p. The 7-7 part dominates in all cases but the m-p part
is also important (see figs. 1b, 2a—c). The p-p part is of
less importance for all the considered matrix elements.

3.2 The aPWD for V() (1 + P) operator

As was described in sect. 2, aPWD can be applied not
only to the V(1) alone but also to the V(1) (1 + P) opera-
tor. Using aPWD for V(1) (14 P) has the same advantages
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P 1 5
<p’.q’.0 |V()|p,q,oc>[fm]

1.5x10” T T T I
F\ a) 3
-2 [ .
1.0x10”° [ ]
5.0x10° F =
0.0F .
T T T T FrT T T 7T 79 &
6x10° F 4 F 4 8x10
F B o = 6
4x10° 3 2 E6><106
% E S = 4x10
2x10 = R
o 31 F —2x10
e i N 30
0 2 4 6 8 10 0 2 4 6 8 10
-1 . -1
plfm ] p[fm ]

Fig. 2. (Color online) The same as in fig. 1 but for momenta
values p’ = 0.711fm ™!, ¢ =0.132fm™!, ¢ = 2.842fm .

Table 1. The values of the discrete quantum numbers for se-
lected a-states (5) for the total angular momentum J = 3 and

the positive parity IT = (—1)"T.
« l s J A I t
1 0 0 0 3 1
3 1 0 1 1 3 0
4 1 0 1 1 3 0
6 0 1 1 2 3 0
8 2 1 1 2 2 0

as for the V(1) operator: the automatized procedure can be
easily tuned to any kind of 3NF and reduces the possibil-
ity of errors. In the current implementation of aPWD the
calculation of V()(1 + P) matrix elements needs about
the one and half amount of the computing time needed
for V1) which is important from the practical point of
view. Finally, in the standard scheme of PWD, the num-
ber of intermediate partial waves used to represent the P
operator is limited and might be insufficient. In the case
of aPWD there is no separate decomposition of the per-
mutation operator which corresponds to the inclusion of
all three-body intermediate waves. In figs. 3 and 4 the
matrix elements of V(1)(1 + P) are shown for the same
momenta and channels as in figs. 1 and 2, respectively.
For the channel combinations (1,1) and (6, 3) in fig. 3 and
(1,1) and (6,8) in fig. 4, where the -7 force dominates,
the picture is similar to the corresponding ones in figs. 1
and 2. For the remaining channel combinations the dif-
ferences are more visible, for example the inclusion of the
permutation operator for the -7 component for the (6, 8)
pair in fig. 3 leads to the change of the sign and strength
of this force. In that case also the 7-p part becomes big-
ger after the permutation operator is applied. Also for the
(6,3) case in figs. 3 and 4 the action of the permutation
operator changes the strength of the matrix element and
increases the momentum range, where both m-7 and 7-p
components play a significant role. For the majority of the

The European Physical Journal A

(1)

<p’.q e | VO(U+P) | p.g.o> [fm]

2x10°

E | | | |
0O 2 4 6 8
Bl

p[fm ]

Fig. 3. (Color online) The same as in fig. 1 but for the V) (1+
P) operator.

<p".q,0 | VO(14P) | pa,oe> [fim”]

2.0x10° T
1.5x10°
1.0x10”
5.0x10°”
0.0

5.0x10”

3x10°

2x10°

1x10° 5

Fig. 4. (Color online) The same as in fig. 2 but for the V) (14
P) operator.

here-presented cases the p-p force is much smaller than the
remaining interactions.

The aPWD method allows us to study the role played
by different isospin structures entering the TM force. An
example is given in fig. 5 where, for the 7-p force, the con-
tribution from the so-called “Kroll-Ruderman” and two
“A” terms [4] (see also appendix A.1) are shown. For
the presented matrix elements ((p’ = 0.132fm™!, ¢ =
0.132fm~", o/ = 1|V ) (1+P)[p, ¢ = 0.132fm™", o = 1))
the “Kroll-Ruderman” term dominates for small momenta
p, while the two “A” terms are bigger for p > 2fm™1!.
However, they have opposite signs, so their combined ef-
fect is weak and leads to a reduction of the strength of the
dominant “Kroll-Ruderman” term.

3.3 The comparison of the standard and automatized
PWD schemes for w-7 and 7-p forces

For the 7-7 force the partial-wave decomposition has been
presented in [3] and in an alternative way in [17]. The com-
parison of results obtained by the aPWD and the ones ob-
tained in ref. [17] is presented in fig. 6. Again the channel
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N o 5
<p’q".0| V' (1+P)] p.g.o> [fm’]

T T St I N

-4
20T 6 8 10
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Fig. 5. (Color online) The contributions from the dif-

ferent parts of the m-p force for matrix elements (p' =

0.132fm™', ¢ = 0.132fm™", o/ = 1|V,L,(1 + P)|p, ¢ =
0.132fm™", o = 1). The black solid line represents the to-
tal m-p TM 3NF while the red dotted, green dashed and blue
dot-dashed lines represent the “Kroll-Ruderman”, the isospin
even A and the isospin odd A terms, respectively.

PR 1 5
<pqoc |V [pqa>[fm’]

a)

Fig. 6. (Color online) The comparison of the matrix elements
of the m-7 force obtained in the standard (crosses) and au-
tomatized (solid line) PWD. The channel combinations and
momentum values are the same as in fig. 1.

pairs and momenta are chosen as in fig. 1. A very good
agreement between both methods is clearly seen.

In appendix A we present expressions for the partial-
wave decomposition of the 7-p force. This decomposition
is in the spirit of the decomposition of the 77 interac-
tion given in ref. [17]. In fig. 7 we compare the results
obtained in the aPWD scheme with those based on PWD
given in appendix A. Because of the internal construction
of the PWD from appendix A, we compare matrix ele-
ments of V(1) Py3 Pys instead of V). The matrix elements
of the standard PWD are obtained using partial waves up
t0 Jmaz = D in intermediate states. For this truncation,
the matrix elements considered here are converged (see
sect. 3.5). Again, for all given examples, the agreement
between both methods is excellent.
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Fig. 7. (Color online) The comparison of the matrix ele-
ments of the m-p force obtained in the standard PWD from
appendix A (crosses) and automatized (solid line) PWD. The
channels pairs and momenta are the same as in fig. 2.

In our implementation the numerical calculation of
all 182 channels combinations of the V(D (1 + P) m-p
3NF matrix elements, on the grid of 16 p’, ¢’, p, ¢ with
N = 14 Gaussian points used in each integration in 14,
takes about 10 hours of CPU time when using 16000 pro-
cessors of the parallel supercomputer Jugene located in
Jilich, Germany. In contrast, the standard PWD requires
approximately one hour on a single processor. Though
the CPU time is smaller for the scheme presented in ap-
pendix A, the long time which is needed for the derivation
of the partial-wave decomposition of complicated spin-
momentum structures and its programming in the stan-
dard way is incomparable with the relatively short time
demanded by aPWD. Another advantage of aPWD lies
in its flexibility which allows one to use it easily for dif-
ferent operators. In the case of the standard PWD each
spin-momentum structure has to be treated separately.

3.4 The equality of V(O P1,P23 and VD P3Py

The equality of V(l)P13P23 and V(l)Plgpgg matrix ele-
ments between the states antisymmetrized in the (23) sub-
system forms another nontrivial test of numerics. To check
this, we compare some matrix elements for V) Py Pys
obtained via eq. (20) with the corresponding ones for
VW Pi3Py3 from eq. (21). Results are displayed in fig. 8
again for four combinations of channel pairs and selected
values of p/, ¢’ and ¢ momenta (the same as in fig. 1). The
numerical confirmation of the equality of the V(1) Py3Pyq
and V() Py Py3 matrix elements is clear. They differ from
the V(1) elements, as can be seen for some examples in
fig. 8. All three possibilities are shown: for the chan-
nel combinations (1,1) and (1,4) V) dominates, while
V(l)Plngg and V(l)Plngg are much smaller. For the
(6,3) combination each operator gives a similar contribu-
tion to V(N (1 + P). For the (6,8) choice and momenta
around 2fm ™" the contribution from V) is much smaller
than the remaining two.
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Fig. 8. (Color online) The contribution of O; = V),

V) Py Pyg and V) Pyy Pog operators to the total V(1 + P)
TM 3NF matrix elements. The channels combinations and mo-
menta are chosen as in fig. 1. The crosses represent V(l)P13P23
matrix elements. The dashed, dotted and solid lines represent
VO v P, Py and V(14 P) matrix elements. respectively.
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Fig. 9. (Color online) The convergence of the matrix elements
of the m-p part of the TM force: V,E_lg(l + P) with respect to
the number of the intermediate partial waves used during the
action of the permutation operator (see eq. (6)). The chan-
nel combinations and momenta are the same as in fig. 2. The
crosses represent predictions obtained within the aPWD ap-
proach, the dotted (black), dash-double-dotted (red), dash-
dotted (green) and solid (black) lines represent the results ob-
tained with the traditional method described in appendix A
with all the intermediate 3N states up to jmaz = 2,3,4 and 5,
respectively.

3.5 The convergence of V(!)(1 + P) matrix elements
with respect to the number of the intermediate partial
waves for the m-p and the full TM forces

The aPWD result for the V(1) (1+ P) operator, which cor-
responds to the infinite number of the intermediate partial
waves taken into account during the action of the permu-
tation operator, gives the limit to which results of the
traditional scheme should converge. This convergence is
confirmed in figs. 9 and 10 for the m-p part of the TM and
the full TM 3NF, respectively. The channels and momenta
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D(1+p) [ p.g.o> [fm’]
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Fig. 10. (Color online) The convergence of the full TM
V(1 4+ P) matrix elements with respect to the number of
intermediate partial waves used during the action of the per-
mutation operator. The channel combinations and momenta
are as in fig. 2. The crosses represent predictions obtained
within aPWD approach. The dotted (black), dash-double-
dotted (red), dash-dotted (green) and solid (black) lines rep-
resent the results obtained by the action of the permutation
operator on the TM V) force with all the intermediate 3N
states up to jmas = 2, 3,4 and 5, respectively.

are the same as in fig. 2. While for the channel combina-
tion (1,1) already the smallest number of partial waves
gives the aPWD limit, for the other combinations much
more partial waves have to be taken into account. For one
of the cases shown here (fig. 10c), taking all partial waves
up to Jimae = 5 is still insufficient to achieve the limit of
aPWD. Note, however, that the magnitude of this matrix
element is relatively small. In general, the convergence of
the traditional PWD scheme is fully confirmed.

3.6 The binding energy and correlation function for 3H

As a first application, we would like to calculate in the fol-
lowing the binding energy of 3H, some energy expectation
values and the correlation function. The obtained bind-
ing energies and expectation values of the kinetic energy
(Hy), the NN potential energy (V) and the 3N poten-
tial energy (V3n) are given in table 2 for several realistic
NN interactions alone and together with the TM force.
The TM force was included for all states with subsystem
total angular momentum j < 2. The inclusion of the TM
force leads to a stronger binding of 3H. The binding energy
changes, after the inclusion of the TM force, by approx-
imately —1.093 MeV for the CDBonn potential and from
—1.122 to —1.334 MeV for Nijmegen potentials. These re-
sults are in a reasonable agreement with the ones given
in table 2 of ref. [6] for the Bonn OBEPQ (—9.596 MeV)
and the Nijmegen (—8.689 MeV) potentials. Note, that in
ref. [6] slightly different values of the a, b and ¢ param-
eters were used. In our calculations, we include partial
waves up t0 jmaer = D for the two-body interaction. This
is also different from ref. [6] where only partial waves up
t0 Jjmaz = 2 were included. Of course, for the given set of
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Table 2. The triton binding energies E; and the energy expectation values (Ho), (Vnn) and (Van) for the different NN

potentials alone and together with the TM 3NF.

NN potential E, [MeV] (Ho) [MeV] (V) [MeV] (Van) [MeV]
CDBonn —8.008 37.620 —45.609 -
Nijmegen I —7.738 40.737 —48.467 -
Nijmegen II —7.658 47.526 —55.176 -
Nijmegen 93 —7.664 45.617 —53.283 -
CDBonn + TM —9.101 41.934 —48.669 —2.342
Nijmegen I + TM —8.860 45.523 —52.277 —2.098
Nijmegen II + TM —8.992 54.318 —61.112 —2.189
Nijmegen 93 + TM —8.841 51.173 —58.092 —1.925

parameters, the binding energies do not accurately repro-
duce the experimental value of —8.482MeV. Because of
the well-known scaling behavior of many N-d scattering
observables with the triton binding energy (see for exam-
ple [21,22]), it will be necessary to finetune the TM model
such that the triton binding energy is more accurately re-
produced, e.g. along the lines of ref. [13].

The inclusion of the TM 3NF leads for all the NN po-
tentials to higher expectation values of the kinetic energy
and lower expectation values of the NN potential energy
(about 3-6 MeV). The expectation values of the 3N poten-
tial energy amounts from 3.3% to 4.8% of the expectation
values of the NN potential, depending on the particular
NN potential. This observations are in line with the gen-
eral expectations for the strength of 3NFs and the more
compact state of H when the binding energy is increased.

The correlation function is defined in the configuration
space as [13]

Clr) = %% (@] S 6(r — riy)|0),

1<J

(22)

where 7;; is the relative distance operator conjugate to the
operator of the Jacobi momentum p. It is shown in fig. 11
for the different NN potentials alone and combined with
the TM 3NF. For the smaller distances shown in fig. 11,
the probability to find two nucleons increases when the
TM 3NF is included. At least in part, this can be under-
stood because the correlation functions drop more quickly
for larger r due to the increased binding energy. Note that
at short distances, the effect of the 3NF's is much smaller
than the dependence on the NN interaction model. The
here-presented correlation functions are in good agree-
ment with the ones presented in [13] for the same NN
potentials combined with the 7-7 part of the TM force.

3.7 The quality of the five-dimensional integration

Finally, we would like to give an example of the stability
of aPWD against the number of points used in the nu-
merical integrations. In table 3 the V(1 + P) matrix
elements are given for the same channels and momenta
as in fig. 1 for two values of momentum p = 0.711 fm~!

0.020

0.015

g
=
=
S

C(r) [fm”]

0.005

0.000 ==L ‘ ‘
r [fm]

Fig. 11. (Color online) The two-body correlation function for
the triton for different NN potentials alone (thin blue lines) and
together with the TM 3NF (thick black lines). Results obtained
with the CDBonn, Nijmegen I, Nijmegen II and Nijmegen 93
potentials are represented by solid, dotted, dashed and dash-
dotted curves, respectively.

and p = 5.959 fm~!. Results were obtained using N = 12
or N = 15 Gaussian points in each of the five integra-
tions in (14). The agreement seen in table 3 between both
predictions clearly demonstrates that the numerical inte-
gration is well under control and leads to fully converged
numbers.

4 Summary

We apply an automatized method of partial-wave de-
composition to the Tucson-Melbourne three-nucleon force.
The obtained results agree very well with the traditional
way of a partial-wave decomposition for m-7 and m-p con-
tributions to the TM 3NF. For the latter one, we also give
formulas of the partial-wave decomposition in the tradi-
tional approach. Matrix elements obtained in the new way
are used in the calculations of the triton wave function
with different underlying nucleon-nucleon potentials. We
performed also different numerical tests, which confirm
the reliability of our method and computer codes.
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Table 3. The V(1>(1 + P) matrix elements (in fm5) for channels combinations and momenta p’, ¢’, ¢ as in fig. 1, depending
on the number of Gaussian points N used in the five-fold integration of eq. (14). The value of momentum p is 0.711 fm ™" (left)

and 5.959 fm ™" (right).

(o, @) N =12 N=15 N =12 N =15
p=0.711fm™! p=0.711fm™ ! p=>5.959fm™! p=>5.959fm™!
(1,1) —0.0010139197 —0.0010139197 8.9762335 x 107% 8.9762335 x 107
(1,4) —0.00083291615 —0.00083291615 —9.0900123 x 107 —9.0900124 x 107
(6,3) —2.8739479 x 1079 —2.8739479 x 1079 1.6945111 x 1079 1.6945111 x 1079
(6,8) —1.212581 x 1079 —1.212580 x 107% —3.5797036 x 107°7 —3.5797045 x 1077

Among many advantages of aPWD, we would like to Introducing isospin, I and I_, and spin, Fx g, F] 4+ FA

17
=+

emphasize its generality, efficiency, the semi-automatized
process of preparing a code and the possibility of a calcu-
lation of the higher partial waves. The latter point gives
hope for the future use of the full Tucson-Melbourne force
in a description of 3N scattering at higher energies. The
expected strong effects on observables coming from a 3NF
should be tested also for short-range parts of three-body
interactions. Such parts are included in the Tucson-Mel-
bourne force.

The automatized partial-wave decomposition is espe-
cially important in view of future applications of 3NF's
arising from the yPT. In this approach, consistent two-
and three-body forces are derived [12]. The numerous spin-
momentum and isospin structures, which occur at higher
orders of the chiral expansion require an efficient and au-
tomatized method for the PWD. The here-presented re-
sults for the TM force prove that such a method already
exists.

This work was supported by the Polish Ministry of Science
and Higher Education under Grant No. N N202 077435. It was
also partially supported by the Helmholtz Association through
funds provided to the virtual institute “Spin and strong QCD”
(VH-VI-231) and by the European Community-Research In-
frastructure Integrating Activity “Study of Strongly Interact-
ing Matter” (acronym HadronPhysics2, Grant Agreement n.
227431) under the Seventh Framework Programme of EU. The
numerical calculations have been performed on the supercom-
puter cluster of the JSC, Jiilich, Germany.

Appendix A. Standard PWD for 7-p
component

The 7-p part [6] of the Tuscon-Melbourne 3NF is given in
terms of the momenta k; and k of the individual nucleons
as

(K koks WP k1 koks) =

1SR, 4 R+ R — Ky — ko — k)
(2m)° (¢ +m3)(q” +m3)
x{—(iT1 - T2 ¥ Tg)R}pR(q2,q'2)(iO'1 co9 X q)
+(2 ) RY (% d%) (@ x q') - (g x 02)
+(iTy -T2 X T3)R2p7(q27q/2)[(i0'1 cO02 X q')q2

—(io1-gx q')(o2- @)} + (2 3, = —q).

(03-4")

(A1)

Fif, and Fiﬁ, operators we rewrite it as

(kK ke |W k1 kaks) =
~1
W&(kg + kb + kb — kg — ky — k)
AL RifR(q% ¢%) Frr + T-RY.(¢°,4%) (FA+ — FA%)

+I,RY (4%, ¢%) (Fi- + FAL)}

+(2 3,9 = —¢), (A.2)
with
I, =im -7 X 13, I_ =7y T3, (A.3)
—(0'3~q’) 10102 X q
Frp= A4
KR q/2+mgr q2+mg ) ( )
_ (03-4') (gxq')-(gxo2) I 1
FAJr:q’?—i—m?r q2—|—m% =Fj + — Fay,
i _ (03 d)(o2-q) ¢
A+ = q/2 +m3r q2 +mga
!
FII = (0'3(1) /' (UQq) A5
At q,2 +m3‘— (q q) q2+m%) ( )
P AY S . ! 2
FI,E (U3 q)/(;o-l ZQXq) 2q =, (AG)
¢%+m2 ¢ +m3
and
_ .a’ . . (7 . X !
Pl = ,(203 q2) (02 q) 2(101 2q a) (A7)
¢%+m2 G2 +m?

The R}y, R7),, and R’ form factors are given in terms
of regularization form factors at the meson-baryon-baryon
vertices F; as [6]

2.2
RWKPR(qza q/2) = 16[)W[FPNND (q2) + HPFPNNP (q2)]
XFPNND (q2)F3NN(q/2)a (AS)
and
T 1 T

RY(q%.q%) = ;R (0%, ¢7) =

1 .gﬂ * ﬁsM —m *

448m> Mo N M —m I

X[Fonnp (0%) + ko Fonne (67)]

XFyna(@®) Fena(d?) Fenn (¢). (A.9)
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The F; are taken in monopole form

2 2
A7 —my

Fi(q®) = g’ (A.10)

with i = {sNN,7NA,pNNp,pNNp,pNA}. The mass
of the boson at the corresponding vertex, my, is either
my or m, with exception of the case i = pNA when
mp = 0.

We would like to have matrix elements of the three-
body force in a partial-wave basis |pga)1, where p and ¢
are magnitudes of Jacobi momenta (p is the relative mo-
mentum between particles 2 and 3 and q is the momentum
of the spectator particle 1 relative to the 2-3 pair) and «
denotes discrete quantum numbers which we separate in
spin, oy, and isospin, ar, parts

o)y = ois)ia (33 ) 16,1034 (15 ) a0 )

_ ‘pasm (*3) I(j,I>JM>1 jarhy

= [pgavs)1ar). (A.11)

The partial-wave states corresponding to different specta-
tor nucleon ¢ (i = 1,2,3) can be obtained from |pga);
acting with proper permutation operator, for instance
Pi3Pas|pga)s = |p'q'a)s.

According to the scheme presented in ref. |
matrix elements can be calculated as

17] these

1{pqa| I+ FR(1+P) ‘p/ ! ’ Z/ / //de//qHqu//
1{pgal It FRIp"¢"a" )3 3(p"¢" " |1+ P)|p'd'a’)1, (A.12)

with

<qa|IifR|p// u //

o0 oo
— Z / / p///2 dp///q///2dq///
0 0

all

o0 o0
3 / / PdpiPdd
& 0 0
XZ/ / 2dpq2dq1<pqa|p/// " ///>
X (2<P”’q”’a’j’\f<2>72<2> |Picer)2 o (picus |picis)s

xa(piiis| FORD|P( a))s) ol | Lelar)s,  (A13)

where spin operators F and form factors R are taken
, FAL and R}y, R’ and

, respectively, for dlfferent contributing terms.

1 gl

among Frxr, FA+, Fi., Fa
mp
R
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The matrix elements of the isospin parts appearing in

eq. (A.3) are given [17] by
/ 1 /1 U
2<04T|I_|04T>3: t— TMT t'— )T MT’ =
2\ 2 2 3

T2 T3
11
330
6TT’5MT1VIT/(_6)(_)t\/t? 3115, (A.14)
t 3T
/ 1 . N
o(ar |4 |ar)s= t§ TMr|iT) T2T3 t§ T Mp) =
2 3
4172
_6TT’61\/[TMT/ 24 ZT‘ / Z 3)\+1/2
A=1/2
1
N1 T 5t
x{lf } 1A%, (A.15)
33t W
22

where we use the abbreviation a = 2a + 1.
In the following subsections we will present the re-
sulting expressions for the partial-wave-decomposed ma-
/11111

trix elements o (p" ¢ o/} |F@ R |pgéis)s and 5( |

FORG)|p'q'a})3 of different contributing terms to 7-p
Tucson-Melbourne 3NF.

Appendix A.1. The Kroll-Ruderman term FxrRgR

The matrix elements of o(p"'¢"' /| FARP |pgcrs)e and
3(Bic | FOR®|p'q'al})5 for the Fx g R}, term are iden-
tified as

(0"} | FORD i) —
g —(o3-¢ L
lg < "1t i;/ ﬁ WNN(QI2)|pan>27

s(pies | FOR® | ¢ /)5 —

ZO’l oy X q
g+ m%

XFonnp ()| d o)),

3(pici| [Fonnp (6°) + s Fonne (4°)]
(A.16)
where ¢ = p — p”’ and q = p’ — p. They are given by

—(03-4')

g ...
T2 00" 0 | G P (0 i) =
s
2 .
5 "no_
gpg gd/,, "6>\”’5\61’/’f6J/”j(sM’“M(S i
16m® 72 9" =il 1
i "o ~ ~ % % é l é j///
X27T\/6( )] e +S\/E 1 " 1 7 l/// 1
S 5 S

x\/mazx (1" )

% (p”/HZTNN(p”/,P) 7le7rNN (p”’,p))(—)mm(l'”’l), (A.l?)
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and and the matrix elements of the —p component of
o2 %4, ) . ) o (0" q" | FARP |pgcrs)o and of the p component of
3<pan|W[ NN (@7) + s Fpn g (47)] 3(Pgé | FORE |p'q'ay)5 for FA R are identified as
2\ (o] ] _ o —
XFpnnp ()P’ ay)s = {2<p///q///ag/‘]:(2)73(2) |pan>2} N
8(G—4q')
q2 51'[’55\/\/6']"1" 9p9 ~x MM 5M — mg* <p///q///a///|

48ms MepAr M —m

. (s _
x (=)t 12\/67?\/[7{ } X\/Eq/yl “((j/)(US q)
3
1

12 IPAY RS
S l 1 q,2+m72T Fﬂ'NN(q )FﬂNA(q )‘pan>2a

o
{stiics | FORO P gay)s | —

y (l’ 1 Z) I

[T T
Nl= =

s’
000 . Uuqz ) )
5 3(p an\T[FpNND(q )+ o Fpnng (47)]
KR,pNN/ 1 )17 KRpNN /1 .
PH,, (', p) — p'H; (p ,p)> , (AIB)
( : A@®)[p'd ), (A.22)
with where ¢ = p — p”’ and q = p’ — p. They are given by
T . 1
H, NN(p’”,p) = - (Ql(an—) - QI(BAwNN)) /// /// o 03 q )F 2
p"'p 7 ,2 5 NN ()
A2y —m?2 ¢+
TINN ™
—ran R0 (B ...
o QB X Fana(q®)lpics)2 =
. 1 S(d" — g ..
HZKR7pNN<pI7p) = f (Ql(Bmp) - QI_(BA/JNND>) (q 712 q) 6)\///)'\6[///1'0(1 _ /LJM, :]/NM”,)
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A2 - .
pNN P l 1 . ]
+—2(pr) Ql( pNND) X(_)I/”J"J/” j///]sl//&]{ 2 S} { 1 J ) ) }
1 " 1 7" J/// J
Kp AiNNp —m; ?
“I‘ITP.(QI(BmP) T2 — A2 Ql(BApNND) I 3" ] 1
nr T T A .
) . pNNp pNNp % [51"’i3¢6( )l +1Hl,,I,VN N (p///’p){ o l///}
pNNp — "%p
Qi(Ba,wn,))s (A.19)
A;ZJNNP - AiNND e 2 1 1
and —40mVB(—)H T s
1112 -2 2 1112 s j”l
g PP A my =P +9°+ Ay
7r 2p///p TNN 2p///p XZZHWNN 7TNA /// p Z p///a -b
B - P2+ +m? PP+ Ay, aroee V/(2)1(20)!
my — 2p,p ) ApNND - 2p p 5 -
P2+ Ay X {l”’ i z’} C(a010,1"0)C (6010, 10) |, (A.23)
Ba,yn, = - = (A.20)
P P 2p/p
and

The @Q;(x) are Legendre functions of the second kind. )

q
3<anJ|05m[FpNND (@) + KpFpnne (0°)]
Appendix A.2. The term F'A_l_R’Arﬁ_
XFona(@®)|p'da’)s =

The term F£+ is written as 6(G —
i—4q) NN

, U 7z O Osx O V6 2mH N (1, p')
Fi, = (03./3)@22.(1) 2q 2 :Z(_)H n rapy (L1lg
A . 51 151
A Y@ (s ) { ohq? } ’ ik

3 q? +m2 ?+m2 )’ 14 R
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with
- o . A2 — m2 A2 — mfr
HZrNN NA(p///7p) _ ( 7NN p/)/sp TNA )
x i Q(Bn,)
1 M
(A2 p —m2Z)(mZ — A2y y)
+ Aevy Qu(Baywn)
(DA,
(m2 — A?TNN)(AngN - AngA) o
¥ Arxa QBays)|. (A25)
l Ay ) .
(AngN - A?rNA)(AngA —m2) e
HzTNN—T{'NA(p///’p) _
A2 -
Q LQ BA un
P"'P ( l( ) A72TNN A727NA l( )
A727NN s
+AzA—Ang(BAﬂNA) (A.26)
TN TNN
and
]fI_pNN(p/ P) = (A;ZJNND - m?))AiNA
l ’ p/p'
mg
X Q_(Bmp)
(A;Q;NA - m%)(m% - AiNND) !
+ Ao Qi(Ba )
(m% - A;%NND)(A;Q)NND AzNA) : PRND
AQNA
+ £ Qi(Ba,y
(A?)NND - A?)NA)(AiNA - m,%) i A)>
(KP)(A/Q;NNP - m;%)AiNA
* p'D
m2
X L Qi(Bm,)
(AgNA - m%)( A/QJNNP) ! g
+ Ao, Qi(Ba )
(m2 — 2N )N, — A2xa) R enne

A?)NA
- A?)NA)(A?;NA - m%)

The By, and Bj,na are given by

=+ QZ(BApNA)> : (A27)

(A?)NNP

p///2 +p +A7rNA
2p/// )

BAWNA =

p///2 +p +ApNA
2p/// :

The summation over p in eq. (A.21) can be carried
through resulting in

S (O — pd M IM)C (1 pd' M, M) =

j

By

(A.28)

pPNA

; J
Sy 0 (=) 5

. (A.29)

FORE |p'q

where ¢/ = p — p"”’
eq. (A.31) is equal to eq. (A.23) and the second is given by
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Appendix A.3. The term Fi | R7%

The term FA! is written as

g-¢) 2D Sy

q2+m§

[4m ¢'Yy "(q')(o3 - q')
X{ 3 q? +m2 }
A qY{'(4)(o2 - q)
| Fatte. o)

/
L (03'11)
A+ q/2_|_m72T(

(A.30)

1 11

The matrix elements of the —u component of o(p”'q

V| FORP pgas)e and of the p component of 3(fid|
o/y)s for FAL R7Y, are identified as

. e _M
{20"q" a1 FOR iés)s " —
909 . mOM —m
48m> MPAM M —m

47TqY ( )(0'3 Q) 2 2
F F,
V3 em2 NN (q7) Frnalg

"
{3<15qu|}—(3 @p'qaly)s } -

S| 47qu ( 1)(o3 - q)
q? +m?

/11 11111

mg* 2 (p"'q" 'y

)‘pqa1>27

[Fonnp (@) + 6o Fpnn, (67)]
XFpNA(qQ)\p’q’aHs, (A.31)

and ¢ = p’ — p. The first term in

S| 47qu ( i)(os - q)

q? +m? [Fonnp (q2)+“prNNp (¢*)]
o

XFpNa(qz)\p’Q’afﬂs =

) q/ —d -
(¢2)5A,x5,,f0(1 pJ' M, JNT)

iaag {

2 - !
) [6l/l3¢6(_)l +1HﬁNN(pl p) { S S }

% (_)I'+j+s/7§

211
—40mV6(—) T 5
l/ S/ j/

b ba?2
alNN /
XZ ppﬁzb:wma 1(20)! {l’ll}

x C'(a010,1'0)C(b0I0, iO)] 7 (A.32)
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with where ¢’ = p—p’” and q = p’—p. The last term is identical
ONN 7 1 to the last term in eq. (A.22) for F4, . The matrix element
HP™ 2 (p', ) = in the first term of eq. (A.36) is given by
1 7AiNA ~1 1 /
A2 — m2 Ql(Bmp) " o V2 ¢{o1,Ya(d)} (o3 q)
pNA 4 < | /2 2
q°+mz
%Q[(BA NNp) xFrnn (¢ F, (q’2)|pqa Yo =
ApNND ApNA 4 D 7NN TNA J/2
A m2 A2 6(q/” — q) " "
+ p2NND 2 pNA2 Ql_(BApNA) (_) q///z 5X”>'\51’”I'(_)I I jmjsms‘]
ApNA m ApNA ApNND
A2 . 1 og g
Kp pNA _
2ol P2 0B, xC(1 JM,JM .
+p/p' <A?)NA 7 m% Ql( p) ( K ) I J/// J
AiNA B
+A’2)NNP _AIQJNAQZ( ApNNP) X[§l"’i4ﬁ¢é( )l +s +1Hl7/r/I/VN WNA(p///’p)
2 2 A2
pNNp — Ty pNA
(B A33
+ A?)NA _mp AIQJNA ApNNp Ql( APNA)) ( ) l/// " /// i 1 1
X 33 S
11 S///
Appendix A.4. The term F, _RZ” 22 .
~ ///a
. . . —'—2407'('\/7 ZHZI'NN—TFNA /// '
Using the identity Z ! m—zb:z (2a)!(2b)!
4
o1 x0oy-q =ivV2/ =) (=)Foh{o, Yi(§)} ab 2 .
3 z#: ? C(a010, 1" 0)C(b010, [0)
(A.34) bl
I . .
the term F,_ is written as - 9 k1 11 k
1 . . _
o= (03-q')ioy-o2axq) ¢ _ Z { } I s j 1155, (A.37)
A= = q/2 +m3r q _|_m2 k g j/// % % $"
Yy s Mo i@ )b ang
q/2 + m72'r q2 4 m% .
" Appendix A.5. The term F} _R}”
(A.35)
The matrix elements of the —u component of o(p”¢”" Using the identity
7| FORP | pgay)e and of the pu component of 3(fic| A
T 11— .
FOIRBp'q'al))s for FL_ R} are identified as o1-qxq = —iﬁ?qq/Z(—)#{Ul,Yl(Q)}l’ "Y{(d),
n
11t 1 e (2) 1 (2) 100 54 s (A-38)
{2<p 7o IFTR |pan>2} - the term FL! is written as
1 g9 . mdSM—m ) ‘ )
4 48m> Mo M —m Y Fl :_(UB‘Q)(UZ'Q)(ZUl'qXQ):
o SETm e
x2<plll " ///|\f 47rQ{0'17Y1( )} ’ ( 3'q)
’ o V2 Y { (03 @)Y!'(d) }
.. 2 2
X Fenn (q2) Fena(q?)pgoes)o, 3 < q* +mz
H . K11, —p
{s@ias |\ FORD g al)s} — MY CERL I CATRAaC)) il § (A.39)
¢ +mj

o2
054 2 2
3(BG6vs | 5= [Fpnnp (a7) + KpFonne (47)]
¢>+m2o T preme The matrix elements of the —u component of o(p"”’¢"”

M FORE) pac
xF,na(q?)|p'd a))s, (A.36) 7 |FERE) pgds)e and of the p component of 5(pge |
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FOIRBp'q'a’))s for FAL RT are identified as

{2<p///q///a///|]_—(2),R( )\pqog) }*M .

1 909 m 5M — "o

148m> MM M —m M— mg"2 (gl

dm (o3 -q')q'Y7 "(d) 2 12| e
\/Z 77+ m2 Frenn(q7) Frna(q?)]pgcs)e,

{s (i s | FORG W g'aly)s ) —
ﬁﬁ;;(ﬁdm (02 - q)q{o1, Yi(q)}"
3

q* +m?
X[Fonny (0°) + 5o Fon e (63 Fona(g?

)Ip'd oy)s, (AA40)

where ¢ = p — p'” and q = p’ — p. They are given by

Ar (o3 - q")d' Y1 "(q)
"1 1 12
il F,
20"yl 3 pEp— ~n(¢7)
X Frena(q®)|pgcur)s =
6(¢" —4q)

q/l/2 5}\///}\511/11'0(1 - ﬂJM7 J”/M///)

- ~ (1 1 ¢ Y]

X(—)IW+JW j///jg///éj{2 2 S} { 1 47 }
\/ 1 .
15" L g g

27 et FANNn A
Xlal///igﬁ()l +1I{l NN NA(p”,7p){ S S/I/ l/”
2 1 1
—40mvV6(=) T s

" /i
" s

J

lI/a b

TINN— 7rNA /// .
leH Y \/m

a+b 2
b a2 n 1 M 7
%3 1 7 CLa00,1"0)C(BOT0, (0) (A.41)

and

\/ﬁﬁsﬁﬁijdn (o2 - @)q{o1, Y1 (g}

¢ +m3

X[Fonnp (@%) + ko Fonne (6] Fonal@®)p'q o) =

6(q" —q)
T‘SAMSM‘

v 1 il

I+ T+ +i+1 / v JJ

x V8o ' M JNT .
=) 73 ( ){1’ J’ J}

’ ’ l, 5/ j/ :1l :1l 1 ~ NN
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sey [2F 1) (MY k
7] _ kA FS l l .
+240mV6(—) Y () k{l . 1} z/ § 3 i 5
k s j 555
x> > ()
l )
= m
ab?2 -, —
Xy C(a010,1'0)C (6010, 0) | . (A.42)

Note that in the case of Azya = Arnyn (as was as-
sumed in [6] and also used by us in the applications shown

in this study), the function HZ’TNN_”NA(p”’ p) is equal

to HFNN(p” p) defined in eq. (A.19) and the function

f{l”NN*’TNA(p'” p) is equal to ﬁfNN(p”’,p) given by

2
e . ma
Hl_ NN(p/l’JD) = —p///p (Q[(Bmw) — QZ(BAWNN))
A2 m2
% 72TNNQ2_(BAWNN)' (A43)

2(p"'p
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