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Abstract. we present resently introduced novel approach to include the proton-proton (pp) Coulomb force into
the momentum space three-nucleon (3N) Faddeev calculations. It is based on a standard formulation for short
range forces and relies on a screening of the long-range Coulomb interaction. In order to avoid all uncertainties
connected with an application of the partial wave expansion, unsuitable when working with long-range forces,
we apply directly the 3-dimensional pp screened Coulomb t-matrix. That main new ingredient, the 3-dimensional
screened pp Coulomb t-matrix, is obtained by a numerical solution of the 3-dimensional Lippmann-Schwinger
(LS) equation. Using a simple dynamical model for the nuclear part of the interaction we demonstrate the feasi-
bility of that approach. The physical elastic pd scattering amplitude has a well defined screening limit and does
not require renormalisation. Well converged elastic pd cross sections are obtained at finite screening radii. Also
the proton-deuteron (pd) breakup observables can be determined from the resulting on-shell 3N amplitudes in-
creasing the screening radius. However, contrary to the pd elastic scattering, the screening limit exists only after

renormalisation of the pp t-matrices.

1 Introduction

The inclusion of the Coulomb force into the analysis of nu-
clear reactions with more than 2 nucleons is a long stand-
ing problem. The main reason is the long-range nature of
the Coulomb force which prevents the application of the
standard techniques developed for short-range interactio ns.
One possible way to avoid the difficulties including the
Coulomb force is to use a screened Coulomb interaction
and to reach the pure Coulomb limit through application
of a renormalisation procedure [1-4].

The problem appears when considering the interaction
of protons with deuterons below the pion production thre-
shold. For this 3N system using the Faddeev scheme high-
precision numerical predictions for different observables in
elastic proton-deuteron (pd) scattering and for the deuteron
breakup reaction are being obtained [5], however, only un-
der the restriction to short-ranged nuclear interactions. The
high quality of the available pd data for both processes re-
quires, however, in the theoretical analysis the inclusion of
the Coulomb force into the calculations. Furthermore the
seminal progress [6] in the development of nuclear forces
in chiral effective field theory calls also for a very precise
solution of the pd scattering equations to test unambigu-
ously these new dynamical ingredients. This test can only
be completely satisfactory if the pp Coulomb force is per-
fectly under control.

For the elastic pd scattering first calculations, with mod-
ern nuclear forces and the Coulomb force included, have
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been achieved in avariational hyperspherical harmonic ap-
proach [7]. Only recently the inclusion of the Coulomb
force became possible also for the pd breakup reaction [8].
In [8], contrary to [7] where the exact Coulomb force in co-
ordinate representation has been used directly, a screened
pp Coulomb force has been applied in momentum space
and in a partial wave basis. In order to get the final pre-
dictions which can be compared to the data, the limit to
the unscreened situation has been performed numerically
applying a renormalization to the resulting on-shell ampli-
tudes [8,9]. This allowed for the first time to analyze high-
precision pd breakup data and provided a significant im-
provement of data description in cases where the Coulomb
force plays an important role [10].

However, in spite of that substantial progress results of
these calculations present concern for two kinematically
complete breakup geometries: the pp quasi-free-scattering
(QFS) configuration, in which the not detected neutron is
at rest in the laboratory system, and the space-star (SST)
geometry, in which all 3 outgoing nucleons have the same
momenta (magnitudes) in the plane which in the 3N c.m.
system is perpendicular to the incoming nucleon momen-
tum. The theoretical predictions based on nuclear forces
only show, that the cross sections for QFS and SST are
quite stable against changes of the underlying interactions,
including also three-nucleon forces [5]. At energies below
« 20 MeV theory underestimates the SST pd cross sec-
tions by « 10%, and overestimates the pp QFS cross sec-
tions by « 20%, respectively [5,8]. With increasing energy
the theoretical cross sections come close to the data, which
indicates that the pp Coulomb force is very probably re-
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spansible for these low energy discrepancies. However, the Even more that would lead to an explosion of the number
Coulomb force &ects found in [8] are practically negligi-  of 3N partial waves required for convergence.

ble for the pd SST configuration and only slightly improve
the description of the pp QFS data [11-15].
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Fig. 2. (color online) The real and imaginary parts of the proton-
proton on-shell screened Coulomb t—matri><l5%"th =13 MeV as

a function of the cosine of scattering angle x. The exponential
screening witm = 4 and screening radil® = 120 fm have been

. i . . used. The full dots represent 3-dimensional screened Coulomb t-
a function of the cosine of scattering angle x. The exponential 5y ohtained by direct solution of the 3-dimensional LS equa-

screening witm = 4 and screenir_lg radi'LR = 20 fm have been tion. The partial wave summation up to maximal angular momen-
used. The full dots represent 3-dimensional screened Coulomb t-, .| _ 10 20 30 and 50 are given by dashed-dotted, dotted
matrix obtained by direct solution of the 3-dimensional LS equa- dashr(;a(; and s,,olidl lines, respectively ' '

tion. The partial wave summation up to maximal angular momen-
tumlax = 3, 5and 10 are given by dotted, dashed and solid lines,
respectively. In [16,17] we proposed a novel approach to incorpo-
rate the pp Coulomb force into the momentum space Fad-
deev calculations, in which we apply directly the 3-dimen-
This inability to understand the pp QFS and pd SST sional screened pp Coulomb t-matrix without relying on
cross sections calls for reconsidering the inclusion of the a partial wave decomposition. 3-dimensional solutions of
Coulomb force into momentum space Faddeev calculationghe LS equation for dierent screening radii are used to
One main concern in such type of calculations is the appli- approach the final predictions. We demonstrated, that the
cation of a partial wave decomposition to the long-ranged physical elastic pd scattering amplitude has a well defined
Coulomb force. Even when screening is applied it seemsscreening limit and does not require renormalisation. In
reasonable to treat from the beginning the screened pp Coueontrast, in case of pp scattering the scattering amplitude
lomb t-matrix without partial wave decomposition because requires renormalisation in the screening limit which, how-
the required limit of vanishing screening leads necessarily ever, has not to be applied when only observables have to
to a drastic increase of the number of partial wave statesbe addressed [18]. In case of the pd breakup the on-shell
involved. As an example we provide numbers for the expo- solutions of the Faddeev equation are required [17]. They
nential screening of the formr ()", Taking the screening  demand renormalisation in the screening limit which can
radiusR = 20 fm andn = 4 requires all < lyax = 10 par- be achieved through renormalisation of the pp t-matrices.
tial wave states to reproduce the 3-dimensional pp screened In section 2 we present the main points of the for-
Coulomb t-matrix aiE',f‘b = 13 MeV (see Fig.1). Increas- malism outlined in details in [16,17]. The pd elastic and
ing the screening radius 8 = 120 fm requires at least breakup transition amplitudes are shown in section 3. The
Imax = 50 (see Fig.2) which is a big numerical challenge. screening limit for pd elastic scattering and breakup is dis-

Fig. 1. (color online) The real and imaginary parts of the proton-
proton on-shell screened Coulomb t-matrixE.*@’b =13 MeV as
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cussed in section 4 and the results shown in section 5. Thewith two-nucleon subsystem isospis 1 the correspond-
summary is given in section 6. ing t-matrix elemenk pa|tﬁ+c(E— %qz)m’a’ >is alinear
combination of the pp;';mc, and the neutron-proton (np),
thp, t = 1 t-matrices, which are generated by the interac-
2 Faddeev equations with screened pp tionsVpp ™ + VR andVyp °, respectively. The cdcients
Coulomb force of that combination depend on the total isospimnd T’
of statede > and|o’ > [16,19]:
We use the Faddeev equation in the form [5]

1 1 1 2
<t=1T = SR, =1T" = = > = Styp + =11
T|® >=tP|d > +tPGT|d > (1) g' N % % P % pp+c
= = — R 4 = 4 = — = — _ R
whereP is defined in terms of transposition operatd?s; <t=1T= 2|tN+C|t 1 2~ 3t”p " 3tpp+C
P12P23 + P13P23, Gg is the free 3N propagatorp > the fo1T = 1 R = 1T = 3 V2 ¢ R
initial state composed of a deuteron state and a momentum <= ' = 5' N+l = =277 ?( np ~ tppic)
eigenstate of the proton. Knowing® > the breakup as 3 , , 1 \2
well as the elastic pd scattering amplitudes can be gained <t=1T = §|tﬁ+c|t =1 =5>= —(tp - thp+c)(6)

by quadratures in the standard manner [5].
We use our standard momentum space partial wave ba+or isospint = 0, in which casd =T’ = %:
sis|pga >

1 1
<t=0T =R ' =0T"==>=ty. (7)
1P >= P9I (NIT> () 2 e 2=

o _ , In case oft? only the screened pp Coulomb for®& is
ard distinguish between the partial wave stapeg > with acting.

total 2N angular momentumbelow some valugmax: j < The third term on the right hand side of (5) is propor-
jmax, In which the_nucIRea_lr\/_,\., as well as the pp screened {j55 to < PABIRPGolp' (B’ >< PR, A direct calcu-
Coulomb interactionV¢' (in isospint = 1 states only), are  |ation of its isospin part shows that independently from the
acting, and the stat¢pqs > With | > jmax, for which only - ya)ye of the total isospi it vanishes [16].

V¢ is acting in the pp subsystem. The stafiegae > and Inserting< pgd|T|® > from (5) into (4) one gets

|pgB > form a complete system of states

(pael T |®) = (paal 1], P @) + (pael ], PGotIP |®)

_ 242 ~ ~
| = fp dpq dq;|pqa><pqa'| - < pq6¥| tE+CPGOpr/2dprq12dqr p/q/a/>
= f p?dpaPda( ) Ipde) (paal + . 1paB) (pal) (3) x (p'q | CP|®)
) g + (pdel ], PGo Y f p?dp'ady [p'aa’)
Projecting (1) forT|® > on the|pga > and|pgB > states L, o
one gets the following system of coupled integral equations x(pqa|T|®)
R R 72 I N2 AN |~ A A
(pdial T 1) = (pal g, P |®) +(pdol - .cPGoEPGo ) f Prdrgdd [ a’)
+ (Pl ], cPGo ) | f p?dp'g?dq [p'aa’) X (Pq | T|®)
x (pqa| T |®) ’ — (pqgal tﬁ+CPGoZ f p2dp'q?dg |p'ge’
R 1240~ A 2AA | W A R «
+ <pqa'| tN+cPGO ; f p dp q dq p qﬁ > X <p/q/a/ tEPGO Z f p//2d pnqNqu// pnq//an>
% <p/q/ﬁ/ T |®) (4) « <p//q//a// T|D) . (8)
R This is a coupled set of integral equations in the space of
(a8l T |P) = (paBItcP|P) the stategae > only, which incorporates the contributions
+ (pgBI tRPG, Z f p2dp'q2dq |p'g e’ of the pp Coulomb interaction from all partial wave states
~ up to infinity. It can be solved by iteration and Pade sum-
x(p'q | T|®) mation [5, 16]. _
R o When compared to our standard treatment without scree-
+ (pasl tc PGtop dp'q“dg’ |p'd’s’) ned Coulomb force [5] there are two new leading terms
B < paelty, PGotRP|® > and < paalty, .PGola’ >< o/ [tRP
X(P'dB|TI|P) (5) |@ >. The first term must be calculated using directly the 3-
_ _ dimensional screened Coulomb t-matfx while the sec-
wheret, . andtf are t-matrices generated by the interac- ond term requires partial wave projected screened Coulomb

tionsVy + VR andVR, respectively. Namely for statéis > t-matrix elements in thigr > channels only. The kernel also
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cortains two new terms. The term pgelty, .PGotRPGo x{p"'q'a’| T |®)

lo’ >< &'|T|® > must again be calculated with a 3-dimen- +(pq | (7P |®)

sional screened Coulomb t-matrix while the second one, R P

-< paalt}, PGole’ >< &/|tRPGola” >< o”[T|® >, in- +(pq It PGoZ f p“dp’g“dq |p'qa’)

volves only the partial wave projected screened Coulomb @

t-matrix elements in thex > channels. The calculation of X(P'qa|T|D) . (13)

the new terms with the partial wave projected Coulomb t- | fo|jows, that in addition to the Faddeev amplitudes

matrices follows our standard procedure. Namely the two _ pqgalT|® > also the partial wave projected amplitudes

sub kernel$ﬁ+CPG0_ andt}PG, are applied consecutively PqaltRP|® > and< paaltiPGola’ >< o’ [T|® > are re-

on the corresponding state. The detailed expressions howyired. The expressions for the contributions of these three

to calculate the new terms with the 3-dimensional screenedigms 1o the transition amplitude for elastic scattering and

Coulomb t-matrix are given in Appendix A of Ref. [16]. breakup reaction are given in Appendix B of Ref. [16].

The last two terms in (13) again must be calculated us-

] o ing directly 3-dimensional screened Coulomb t-matrices.

3 The pd elastic and breakup transition In Appendix C of Ref. [16] the expression fquq | tRP |®)

amplitudes and in Appendix D of Ref. [16] the last matrix element

< pq tRPGola’ >< o/|T|® > are given.

The transition amplitude for pd elastic scattering is given

by [5,20]

» 4 The screening limit

U|®) = (P

PGyt + PT|®) . 9)
The set of coupled Faddeev equations (8) is well defined
That amplitude has two contributions. The first one is in- for a finite screening radius. Itis an exact set assuming that
dependent of the pp Coulomb force [16] the strong NN t-matrix can be neglected beyond a certain
1 jmax, Which is justified. Further the pp screened Coulomb
< q)'|pG61|q) >=< @'|PV|d >= —= < ¢'|PooV,?8I¢ >(10) force is taken into account to infinite order in the partial
2 wave decomposition in form of the 3-dimensional screened
trol the screening limit for the physical pd elastic scattering
Piw = P12P23 + (=) P13Paslspin-momentum -~ (11) amplitude (9) and for the physical pd breakup amplitude
(12).

To calculate the second part of the matrix element (9)  For the pd elastic scattering the contribution (10) is
one needsgpq | T |®) composed of low and high partial ~ well defined and independent of the Coulomb force. The
wave contributions folT|® >. It enters also the transi-  corresponding expression without partial-wave expansion
tion amplitude for breakup: @o|Ug|® > which is given s given in Appendix C (C.5) of [16]. In [16] analytical
in terms ofT |®) by [5,20] arguments were provided that also other terms contribut-

ing to the elastic scattering amplitude has a well defined

(Do Uo|®P) = (Dol (1 + P)T &) (12) screening limit and does not require renormalisation. Thus

also the physical on-shell elastic pd amplitude has a well
f L . . . defined screening limit and does not require renormalisa-
permutations acting in momentum-, spin-, and isospin-spa- 1, ‘i’ can be traced back to the fact that to get the elas-

ces can be applied to the bra-stateg| =< pgmyv;| chang- . . ; o ) |
ing the sequence of nucleons spin and isospin magnetict'c pd scattering amplitude it is ficients to solve the Fad

quantum numbersy and; and leading to well known lin- deev equations (8) forfiyshell values of the Jacobi mo-

where|®y >= [pgmyv; > (i = 1,2, 3) is the free state. The

ear combinations of the Jacobi momepig. Thus evalu- menta
ating (12) it is stficient to regard the general amplitudes 32 N iq2 L E (14)
< pamMemevaveyvs(T @) = (pq | T |@). Using Eq. (1) and m  4m '

the completness relation (3) one gets: The daf-shell Faddeev amplitudépga| T |@) of EqQ.(8) are

P determined by fi-shell nucleon-nucleon t-matrix elements
(pa | T @) = (pq |Z f p“dp’g“dd [p'da t(p, p'; E-207), which have a well defined screening limit
L o (see the following discussion and examples).
X(Pqa|TI®) The case of the pd breakup process is quiéettnt.
_ 24’ o2dd |o'd o Contrary to pd elastic scattering the physical breakup am-
{pd |; f PrdpaTdd |pga’) plitude (12) corresponds to the on-shell values of Jacobi
2 3 3
_ /2d112d/ PV p__2: E_2
<pq|pr Paedd [p'de’) =t amd = E= 4 O (15)

That means that the physical pd breakup amplitude (12) re-
quires on-shell Faddeev amplitudgsqe| T |®) together

X <p/q/a/ t(F:QPGOZ f pNde//q//qun p//q//an>

05003-p.4
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with the four, also on-shell, additional terms in (13), with Lol ! g

Po = +/3(Q%x — 6. The on-shell Faddeev amplitudes can Tt - a) ]

be obtained from thef®shell solutiong pge| T |®) using 08l ]

®): T ]

(Podel T |) = (podal tR P |b) 08, .

+ (poted ty, . PGotE P D) . F ' ]

— <p0qa’| tﬁH:PGO Z f p/2d prqudq/ prqra/> .,>§ 0,4 - ]

s 7 7| +R v g i :

xX(p'qa|tcP|P) = 02F ]

+ <p0qa| tﬁ_H:PGO Z f p/2d p/qIqu/ p/q/a/> Nf C —— } —— } —— } —+— } —+— ]

o = 1,0+ _

x{p'qa|T|P) e b) ]

+ (Pogal ], PGotEPGo | f p2dp'qdd [p'ga’) g %o ]

x(Pqad|T|P) 06f ]

_ <p0qa,| tﬁ+CPG0 Z f p/2d prqudq/ prq;a;> N : :

X <p/q/a/ tEPGOZ f p//2d pnqNqun pnq//an> : :

— 0,2\ -

o o [ R R R Ll 3
x| T D) . (16) 0 0,2 0,4 0,6 0,8

These on-shell amplitudes together with additional, also P [fm ]
on-shell, terms in (13) define the physical breakup ampli- Fig. 3. (color online) The real part of the nonrenormalized (a) and
tude (12). That inzconsequence requires half-shell t-matriX rerprmalized (b) 3-dimensional half-shell screened Coulomb pp
elements(po, p’; %) which are of 3 types: the partial wave
projected pure screened Coulonfogenerated byR, the
partial wave projectet}, . generated bygron, + VT, and
the 3-dimensional screened Coulomb matrix elements.

It is well known [1,21,22] that in the screening limit
R — oo such half-shell t-matrices acquire an infinitely os-
cillating phase facto€?=(P), where®r(p) depends on the
type of the screening. For the exponential screening used
in the present study its form depends on two parameters,
the screening radiuR and the powen:

t-matrix tR(po, p’, X; p—j). The lines correspond to the exponential
screening witn = 1 and diferent screening radi&® = 20 fm
(black dotted line)R = 60 fm (blue dashed-dotted lineR =
120 fm (red dashed lineR = 180 fm (black solid line). The
Coulomb half-shell result of Ref. [26] is given by thick dots. The
momentump, = 0.396 fnT! andx = 0.706.

For the 3-dimensionalfshell screened Coulomb pp t-
matrix the pure Coulomb screening limit of Ref. [28,27] is
achieved without any renormalisation factor for screening
radiaR > 20 fm (Fig. 5).

Analogous behavior for the partial wave decomposed

_ _ 1 R
At a given valuen the pure Coulomb potential results for | = 0 half-shell screened Coulontf and the'So t5,,

R — 0. As has been shown in [23] based on [24,25], the :;]mgtrice_s is shovtvn in Figsh_g_tandd 7,t_resEectiver. r:Nhitlﬁ
related phase@s(p) is given as e imaginary part again exhibits drastic changes when the

screening radius increases (Fig. 6a and 7a), removing the
Dr(p) = —n[In(2pR) — €/n] phase factoe '?=(P) (renormalisation) provides a well de-
fined limit for the screening radiR > 40 fm (Fig. 6b and
wheree = 0.5772.. . is the Euler number angl = ";%’ the 7b). It is seen that in case when the screened Coulomb po-
Sammerfeld parameter.
Contrary to the half-shell, thefidshell t-matrix ele-

tential is combined with the strong force also the real part
of the half-shell t-matrix undergoes strong changes with

ments do not acquire such an oscillating phase and theirincreased screening (Fig. 7a).

screening limit is well defined. For the partial wave decomposeft-shelll = 0 scr-

In Figs. 3-4 we demonstrate that behavior for the 3- eened Coulomtf and the'Sy tf,,. t-matrix elements a
dimensional half-shell screened Coulomb pp t-matrix [18]. well defined screening limit is reached without any renor-
Increasing the screening radius R changes drastically themalisation (Fig. 8b and 8a, respectively).
imaginary part of the t-matrix (Fig. 4a). The real part is That oscillatory phase factor appearing in the half-shell
more stable but does not approach the pure Coulomb limitproton-proton t-matrices requires a carefull treatment of
(Fig. 3a). Renormalizing by the phase facwt?=®) of (16) to get the screening limit for th@oegae| T |@) ampli-
Eqg. (18) provides a well defined limit to the pure Coulomb tudes. Namely for the states > with the two-nucleon sub-
half-shell result of Ref. [26] (Fig. 3b and 4b). system isospirt = 1 the corresponding t-matrix element

@ _(ryn
VR(r) = T (GO (17)

(18)
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Fig. 6. (color online) The real (upper panels) and imaginary
(lower panels) parts of the nonrenormalized (a) and renormalized

() I = 0 half-shell screened Coulomb pp t-mattfpo, ', %S).
The lines correspond to the exponential screening with 1
and diferent screening radi&® = 20 fm (black dotted line)R =
40 fm (blue short-dashed linelR = 60 fm (brown long-dashed
line), R = 80 fm (red short-dashed-dotted lin&®~= 100 fm (ma-
roon long-dashed-dotted line}, = 120 fm (green short-dashed-

ized (a) and renormalized (b) 3-dimensional half-shell screened double-dotted line)}R = 140 fm (blue solid line). The momentum

2
Coulomb pp t-matrixX(po, p', X; p—ng’). For the description of the
lines and values offy andx see Fig. 3.
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Fig. 5. (color online) The 3-dimensional flashell screened

Coulomb pp t-matrixX(p, p', X; —%(2’). The lines correspond to the
exponential screening with = 1 and diferent screening radia:
R = 20 fm (black dotted line)R = 60 fm (blue dashed-dotted
line), R = 120 fm (red dashed lineR = 180 fm (black solid
line). The Coulomb fi-shell result of Ref. [28,27] is given by
thick dots. The momentumy, = 0.396 fnr?, p = 0.375 fnt! and

x = 0.706.

2
< poaltﬁ+C %)|p’a’ > is alinear combination of the pp

and neutron-proton (nf) = 1 t-matrices, the cdBcients

po = 0.26 frm ™.

to achieve the screening limit one needs to renormalize the
pp t—matrixtﬁp+c in that combination before performing the
action of the operators in (16). The term in that linear com-
bination coming with the np t-matrik, does not require
renormalisation.

5 Numerical results

To demonstrate the feasibility of our approach we applied
the outlined formalism to a simple dynamical model in
which the nucleon-nucleon force was restricted to act in
1Sy and®s; -2 D, partial waves only and taken from the
CD Bonn potential [29]. The proton-proton Coulomb force
was modified by the exponential screening (17) with the
screening radiuR andn = 1.

To investigate the screening linlt— oo we generated
set of partial-wave decomposed t-matrictf, based on
the screened pp Coulomb force only or combined with the
strong pp interactiortﬁmc, takingR = 20,40, 60, 80, 100,
120 and 140 fm. With that dynamical input we solved the
set of Faddeev equations (8) faif-ghell values of the Ja-
cobi momentg andg and for the total angular momenta
of the p-p-n system up td < 175 andboth parities. Then
the on-shell Faddeev amplitudg®qe| T |®) were gained
through (16). In this first study we restricted ourselves to
the perturbative approximation for the 3-dimensional scr-

of which depend on the total isospin T and T’ of the states eened Coulomb t-matrix? = VR. In the future studies that

la > andla’ > (see discussion after (5)). It follows that

05003-p.6
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These cross sections were calculated with the screened Coulomb

Fig. 7. (color online) The real (upper panels) and imaginary force and the CD Bonn nucleon-nucleon potential [29] restricted
(lower panels) parts of the nonrenormalized (a) and renormal- tg the 'S, and3S,-3D; partial waves. The screening radii are :

2
ized (b)'Sq half-shell pp t-matrix,, (o, P, %). The lines cor-

respond to the exponential screening with= 1 and diferent
screening radiaR = 20 fm (black dotted line)R = 40 fm

(blue short-dashed lineR = 60 fm (brown long-dashed line),

R = 80 fm (red short-dashed-dotted lind}, = 100 fm (ma-

roon long-dashed-dotted ling}, = 120 fm (green short-dashed-
double-dotted line)Rk = 140 fm (blue solid line). The momentum

R = 20 fm (black dotted line)R = 40 fm (green double-dashed -
dotted line) R = 60 fm (blue long-dashed-dotted lin® = 80 fm

(red dashed- double-dotted lin€&),= 100 fm (blue short-dashed
line), R = 120 fm (red long-dashed ling® = 140 fm (black solid
line). TheR = 40-140 fm lines are practically overlapping. The
black dashed-dotted line is the corresponding nd elastic scattering
cross section. The pluses 4" = 12 MeV pd elastic scattering

po = 0.26 fm. cross section data of Ref. [30].
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= 5T %4 o8 0 04 o8 Fig. 10. (color online) The convergence in the cuf-mdus R of
o [ P Y the pd elastic scattering cross sectfénat the incoming proton

do R=140

o . For the

energyE;® = 13 MeV, shown as the rati%R/

Fig. 8. (color online) The real (upper panels) and imaginary description of the lines see Fig. 9

(lower panels) parts of th&S, t5,..(p. ', p—n‘?) (a)and thel = 0

screened Coulomk(p, p/, %) (b) off-shell t-matrices. For the
description of the lines see Fig. 6. The momentoys: 0.26 fmt
andp = 2.38 fm™.

In Fig. 9 we show the convergence in the screening ra-
dius R of the pd elastic scattering cross section and com-
pare the pd and nd elastic scattering angular distributions
at the incoming nucleon energg® = 13 MeV. On the
scale of the figure the cross sections Ro& 40— 140 fm
3-dimensional LS equation for the screened pp Coulombgre practically indistinguishable. The detailed picture of
t-matrix will be used [18]. When calculating observables that convergence is depicted in Fig. 10, where the ratio of
we also omitted the last term in (13) coming with the 3- the cross sections obtained with the screening rallites
dimensional screened Coulomb t—matﬁpqltEPGoT@). those withR = 140 fm is shown as a function of the c.m.
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10'E R provides cross sections whichidir less thar: 1% up to
35 E the forward scattering anglék, ., ~ 10°. At very forward
10 E angles, where the pp Coulomb force is dominant, larger
102; \ ﬂ screening radii are required to get the cross section with
— T E the same precision.
T e N 4 The angular distributions shown in Figs. 9 and 10 were
E T ETTNT obtained taking in the elastic scattering transition ampli-
% 10 - o E tude (9) the exchange ter(”d?’|PG51|<P> together with the
3 JF T TR I e first four terms in (13) contributing t62’|PT|®). In Fig. 11
107 Tl el we present how each term contributes to the cross section.
10_2; T . ‘ When all terms are taken into account the resulting angu-
E T lar distribution is given by the solid line. The @’|PT
16°C L ‘ 1\20 ‘ ‘ |@ > term ( dotted line related to the first term in (13)) con-

o

18C

tributes significantly at all angles. At backward angles the

o [d e
. [4e0] largest contribution comes from the exchange terd’|P

Gal|<p > (dashed line) while at forward angles the most
important is the “Rutherford” ternﬁcp'lPtEPl@ (double-
dashed-dotted line related to the fourth term in (13)) calcu-
lated with the 3-dimensional screened Coulomb t-maiix
(in this first study treated perturbatively €5= VF). The

Fig. 11. The contributions of dferent terms to the pd elas-
tic scattering cross sectiof at the incoming proton energy
E'pab = 13 MeV calculated with the screening radies= 100 fm.
The dotted and dashed lines are contributions of(th¢PT|®D)
and<¢’|P651|¢> terms, respectively. The double-dashed-dotted

line is the contribution of thg{#'[PZPI®) term coming with g terms based on the partial-wave projected Coulomb t-
ghe li-d'g“enﬂonaé Sacrer‘?”g% Coﬂolf_“b t'mat@XTh_‘; df’J‘Shed'f A matrix, < @'|PtRP|® > (dashed-double-dotted line related
ouble-dotted an ashed-dotted lines are contributions of the :
) . to the second term in (13) ) a|<d>’|PtRPGoT|<P> (dashed-
@' |PtRP|®) and( @’ |PtRPG,T|®) terms, respectively, which are ) . c
< Pt P > IPLe PSoT | > P Y dotted line related to the third term in (13) ), are about 2-

calculated with the partial-wave decomposed screened Coulomb . . .
t-matrix. The solid line encompasses all terms. In this feasibility Orders of magnitude smaller and thus of minor importance.

study the 3-dimensionaf is replaced by/R.

0, [deg]

0., [deg]

The fact that at very forward angles the contribution of the
< @&'| PtRPG(T|® > is an order of magnitude smaller than

the contribution of th(é@’lPtSP@) seems to justify the ne-

E BT glection of the last tern{@’ [PRPG,T &) in (13) coming

g 35 g L Q] with the 3-dimensional screened Coulomb t-matrix. In fu-

7\?& - 20 B ture studies this term will be calculated to verify this state-

E 40 E aol 1 ment.

= ; - ] In Fig. 12 we demonstrat.e numerica!ly th.at.the elastic

o & i‘ T ‘1 pd ampll_tude has a\_/vell_deflned screening I|m|_t and does
«, o, [T not require renormalization. The real and imaginary parts
a a r b ] of the partial wave contributior @'|P(T +tRP +t}PG,T)

%0 0,04 %o 0,04/ N |@ > to the elastic transition amplitude are shown for two

£ = r ] combinations of the incoming and outgoing deuteron and
ga 0,02 7. 002 - proton spin projections and a humber of screening radia
e —Z: A A R = 20,40,60,80,100 120, and 140 fm. The additional

% AN S S Y, SRS S term (10) is real and independent of the screening radius.
x 0 60 120 180 £ 0 60 120 18(

The fourth term in (13) is also real under our approxima-

tion t? = VR and for angles dierent from zero has a well
defined screening limit. Moreover it is peaked in forward
direction and would dominate terms shown. All lines are
practically overlapping. That shows that not only the cross
section but the pd elastic scattering amplitude itself does
not develop an oscillating phase in the infinite screening
limit.

Fig. 12. (color online) The independence of the real (left column)

ard imaginary (right column) parts of the partial wave contribu-
tion ((P;h,mp,lP(T — 18P — tRPG,T)| Py, ) to theEL® = 13 MeV

pd elastic scattering transition amplitude on the diitadius R.
The diferent lines areR = 20 fm - dotted,R = 40 fm - short-
dashedR = 60 fm - long-dashedR = 80 fm - short-dashed-
dotted,R = 100 fm - long-dashed-dotte® = 120 fm - double- : P
dotted-dashedR = 140 fm - solid. Al the lines are practically The results for the breakup reaction are shown in Figs.

. . 50_
overlapping. The incoming and outgoing deuteron and proton 13 - 16 Where the ?XC|“§'Ve cross SeCF'%B% for the
spin projections are for ajry = my = -1 andm, = my = -1 QFS and SST configurations parametrized through the arc-

andfor b): my = -1, my = +1, andm, = my = +3. length of the kinematical S-curve are presented.
For the QFS and SST (see Fig. 13 and 15, respectively)
the convergence in the screening radius is achievéd=at
scatering angle®. . It is clearly seen that already with 60 fm. For QFS the Coulomb force decreases the cross sec-
the screening radiuR = 40 fm converged results for the tion with respect to the nd case and brings the theory close
cross section are achieved. Increasing further the value ofto the pd data. For SST the Coulomb force also brings the-
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Fig. 13. (color online) The convergence in the cuf-cedius R 0 li ;
of thed(p, p1p2)n breakup cross section in a kinematically com- T » e v 1
plete QFS configuration with polar angles of the two outgoing C T T ) f"\t: b
protonsf, = 6, = 3% and azimuthal angleé;, = 18C°. The 05 e '2’ ‘ 172 S—

incoming proton energy iE'pab = 13 MeV and theoretical predic- s [ﬁev]

tions are based on a screened Coulomb force and the CD Bonn__ . o .
nucleon-nucleon potential [29] restricted'®, and3S,;-3D; par- Fig. 14. (color online) In part a): the contrlputlon_ offfherept

tial waves. The screening radius R= 20 fm (black dotted line), terms to the cross section of the QFS configuration of Fig. 13.
R = 40 fm (green dashed-double-dotted linB)= 60 fm (blue The (black) dashed-dotted line is the contribution of the first term
dashed-dotted lineR = 80 fm (red double-dashed-dotted line), (Pol(1 + P)la ><a[T|®) in (13) and the (green) short-dashed
R = 100 fm (blue dashed lineR = 120 fm (red long-dashed line is the contribution of the fourth ternfido|(1 + P)RP|®)
line), R = 140 fm (black solid line). The black long-dashed- in (13) coming with the 3-dimensional screened Coulomb t-

dotted line is the break-up cross section with the pp Coulomb in- Matrix t¢ (in the present calculatiotf = Vg). The (blue)
teraction switched4®. The pluses arE',;’*b =13 MeV pd breakup dashed-double-dotted and (maroon) double-dashed-dotted lines

data of Ref. [11]. are contributions of the secor(dl')ol(l + P)la >< a|t§P|§b> and
of the third {@|(1+ P)la >< a|t5PGOT|q§> term in (13), re-
spectively, which are calculated with partial-wave decomposed
ory close to the pd data, however, only at S-values close toscreened Coulomb t-matrix. The (black) dotted and (blue) long-
the space-star conditio® (~ 6 MeV). For S-values further ~ dashed lines result from th(a<1>0|(1+ P)la >< al(T - t§P)|<15>
away the theory is far above the pd data. and (®o|(1 + P)la >< a(T — t2PGoT)|@) amplitudes, respec-
The theoretical prediction for both geometries results tively. The (red) long-dashed line is the contribution of
through interference of @ierent terms contributing to the  the (@|(1 + P)le >< o|(T - tRP - tEPGoT)|q§> amplitude. The
breakup amplitude. The importance and magnitudes of the(black) solid line encompasses all four terms. All results are for
contributions coming from diierent terms in the breakup screening radiuR = 100 fm. The part b) of the figure shows con-
amplitude difers for those two geometries (see Fig. 14 and tributions of small terms which areftiicult to see on the scale of
Fig. 16). In both cases the largest is the contribution of parta).
the first term in (13k @o|(1 + P)la > < a|T|® > (black
dashed-dotted line in Figs. 14 and 16). For QFS and SST
the cross section resulting from that term is below the pd terms does not mean however, that they are unimportant
data and below the full result which encompasses all termsbecause the interferencéects are nonnegligible and act
(solid line). The magnitudes of three additional terms:  in different ways for QFS and SST.
@o|(1 + P) tRP|® > (the fourth term in (13) calculated Forthe QFS the second largest contribution comes from
with the 3-dimensional screened Coulomb t-matrix, here ((Pol(l + P)la >< a|t§P|<P> (blue dashed-double-dotted li-

approximated by, and given by the green short-dashed ne) while for SST it comes from @o|(1+P)la >< a|tRPGy
line), the second term in (1:\/)@o|(1+ P)la >< alt§PI<P> T|® > (maroon double-dashed-dotted line). For QFS and
(calculated with the partial-wave projected screened Cou-SST taking the amplitude of that second largest contribu-
lomb t-matrix and given by the blue dashed-double-dotted tion together with(®o|(1 + P)le >< a|T|®) changes sig-
line), and the third term in (133 @o|(1+ P)la >< altRPGy nificantly the cross section. For QFS it is the black dot-
T|® > (calculated again with the partial-wave projected ted line in Fig. 14a resulting from @|(1 + P)le > <
screened Coulomb t-matrix and given by the maroon doublex|(T —t2P)|® > while for SST it is blue long-dashed line in
dashed-dotted line), are small. Because they dfieudlii to Fig. 16a resulting fromx @o|(1+ P)le >< a|(T- tRPG,T)

see on the scale of Figs. 14a and Fig. 16a they are again® >.

presented in the part b) of these figures. For both configura-  The third largest contribution provides for both config-
tions the term with the 3-dimensional t-matkx®o|(1+ P) urations smaller changes of the cross section and the re-
tRP|® > gives the smallest contribution. Smallness of these sult when the second and third largest contributions are in-

05003-p.9



EPJ Web of Conferences

4 1,5 —
>t f P11l ]
% i TN ' i
a -« )

— I — e g . A —
51’07 IR —z i g \ ]
2 i
° B i b

N
G - -
= L i
g 05 -
L\')b B 1
i i i
0,0 L ‘ i
0 4 8 12
S [MeV]

Fig. 15. (color online) The convergence in the cuf-madius R of
thed(p, p1p2)n breakup cross section in a kinematically complete
SST configuration with polar angles of the two outgoing protons
0, = 6, = 505° and azimuthal angle;, = 12C°. The incom-

ing proton energy if'pab = 13 MeV and the theoretical predic-
tions are based on the screened Coulomb force and the CD Bon
nucleon-nucleon potential [29] restricted'®, and®S;-3D; par-

tial waves. For the description of the lines see Fig. 13. The x-es

are E'pab = 13 MeV pd breakup data of Ref. [11] and pluses are
E® = 13 MeV nd breakup data of Ref. [31].
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Fig. 16. (color online) In part a): the contribution of féigrent
terms to the cross section of the SST configuration of Fig. 15.

The solid line encompasses all terms. For the description of other

lines see Fig. 14. All results are for screening radus 100 fm.
The part b) of the figure shows contributions of small terms which
are dfficult to see on the scale of part a).

cluded(®o|(1 + P)la >< al(T - tRPGoT - t8P)|®) is given

by the red long-dashed line. It is above the pd data for both

geometries.
Finally, including the smallest contribution from the 3-
dimensional screened Coulomb t—ma(riﬁol(l + P)t§P|q§>

S-values and for the SST configuration at S-values close to
the space-star condition.

6 Summary and conclusions

We presented recently formulated novel approach to in-
clude the pp Coulomb force into the momentum space 3N
Faddeev calculations. It is based on a standard formulation
for short range forces and relies on a screening of the long-
range Coulomb interaction. In order to avoid all uncertain-
ties connected with an application of the partial wave ex-
pansion, unsuitable when working with long-range forces,
we apply directly the 3-dimensional pp screened Coulomb
t-matrix.

Using a simple dynamical model for the nuclear part of
the interaction we demonstrated the feasibility of that ap-
proach. We provided analytical arguments and showed nu-
merically that the physical elastic pd scattering amplitude

rpas a well defined screening limit and therefore does not

require renormalisation. Well converged elastic pd cross
sections have been achieved at finite screening radii.

For the pd breakup we demonstrated that, contrary to
the pd elastic scattering, where the resulting amplitudes do
not require renormalisation, it is unavoidable to perform
renormalisation of the pp half-shell t-matrices in order to
get the physical breakup amplitude. Namely that amplitude
has two contributions, one driven by the interaction in the
pp subsystem and second in the np subsystem. Only the
first part requires renormalisation.

We have shown that converged results for breakup can
be achieved with finite screening radia.

We calculated contributions of fierent terms to the
breakup cross section in QFS and SST configurations. The
action of diferent contributions leads to an interference
pattern, which is dferent for QFS and SST configurations.
In our restricted dynamical model the pp Coulomb interac-
tion brings the nd breakup cross sections close to the pd
data for the QFS configuration. Also for the SST geometry
in the vicinity of the space-star condition the pd theory is
close to the pd data. However, further away on the S-curve
the theory lies above the data.

In this first study the 3-dimensional screened pure Co-
ulomb t-matrix was replaced by the screened Coulomb po-
tential and only a small number of partial wave states for
the NN interaction was taken into account.

In future studies the perturbative approximation for the
3-dimensional screened Coulomb t-matrix will be avoided
and higher partial wave components of the nucleon-nucleon
interaction will be included.
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