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Abstract. We present resently introduced novel approach to include the proton-proton (pp) Coulomb force into 
the momentum space three-nucleon (3N) Faddeev calculations. It is based on a standard formulation for short 
range forces and relies on a screening of the long-range Coulomb interaction. In order to avoid all uncertainties 
connected with an application o f the partial wave expansion, unsuitable when working with long-range forces, 
we apply directly the 3-dimensional pp screened Coulomb t-matrix. That main new ingredient, the 3-dimensional 
screened pp Coulomb t-matrix, is obtained by a numerical solution of the 3-dimensional Lippmann-Schwinger 
(LS) equation. Using a simple dynamical model for the nuclear part o f the interaction we demonstrate the feasi
bility o f that approach. The physical elastic pd scattering amplitude has a well defined screening limit and does 
not require renormalisation. Well converged elastic pd cross sections are obtained at finite screening radii. Also 
the proton-deuteron (pd) breakup observables can be determined from the resulting on-shell 3N amplitudes in
creasing the screening radius. However, contrary to the pd elastic scattering, the screening limit exists only after 
renormalisation of the pp t-matrices.

1 Introduction

The inclusion of the Coulomb force into the analysis of nu
clear reactions with more than 2 nucleons is a long stand
ing problem. The main reason is the long-range nature of 
the Coulomb force which prevents the application of the 
standard techniques developed for short-range interactio ns. 
One possible way to avoid the difficulties including the 
Coulomb force is to use a screened Coulomb interaction 
and to reach the pure Coulomb limit through application 
of a renormalisation procedure [1-4].

The problem appears when considering the interaction 
of protons with deuterons below the pion production thre
shold. For this 3N system using the Faddeev scheme high- 
precision numerical predictions for different observables in 
elastic proton-deuteron (pd) scattering and for the deuteron 
breakup reaction are being obtained [5], however, only un
der the restriction to short-ranged nuclear interactions. The 
high quality of the available pd data for both processes re
quires, however, in the theoretical analysis the inclusion of 
the Coulomb force into the calculations. Furthermore the 
seminal progress [6] in the development of nuclear forces 
in chiral effective field theory calls also for a very precise 
solution of the pd scattering equations to test unambigu
ously these new dynamical ingredients. This test can only 
be completely satisfactory if the pp Coulomb force is per
fectly under control.

For the elastic pd scattering first calculations, with mod
ern nuclear forces and the Coulomb force included, have
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been achieved in a variational hyperspherical harmonic ap
proach [7]. Only recently the inclusion of the Coulomb 
force became possible also for the pd breakup reaction [8]. 
In [8], contrary to [7] where the exact Coulomb force in co
ordinate representation has been used directly, a screened 
pp Coulomb force has been applied in momentum space 
and in a partial wave basis. In order to get the final pre
dictions which can be compared to the data, the limit to 
the unscreened situation has been performed numerically 
applying a renormalization to the resulting on-shell ampli
tudes [8,9]. This allowed for the first time to analyze high- 
precision pd breakup data and provided a significant im
provement of data description in cases where the Coulomb 
force plays an important role [10].

However, in spite of that substantial progress results of 
these calculations present concern for two kinematically 
complete breakup geometries: the pp quasi-free-scattering 
(QFS) configuration, in which the not detected neutron is 
at rest in the laboratory system, and the space-star (SST) 
geometry, in which all 3 outgoing nucleons have the same 
momenta (magnitudes) in the plane which in the 3N c.m. 
system is perpendicular to the incoming nucleon momen
tum. The theoretical predictions based on nuclear forces 
only show, that the cross sections for QFS and SST are 
quite stable against changes of the underlying interactions, 
including also three-nucleon forces [5]. At energies below 
«  20 MeV theory underestimates the SST pd cross sec
tions by «  10%, and overestimates the pp QFS cross sec
tions by «  20%, respectively [5,8]. With increasing energy 
the theoretical cross sections come close to the data, which 
indicates that the pp Coulomb force is very probably re-
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sponsible for these low energy discrepancies. However, the
Coulomb force effects found in [8] are practically negligi-
ble for the pd SST configuration and only slightly improve
the description of the pp QFS data [11–15].
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Fig. 1. (color online) The real and imaginary parts of the proton-
proton on-shell screened Coulomb t-matrix atElab

p = 13 MeV as
a function of the cosine of scattering angle x. The exponential
screening withn = 4 and screening radiusR = 20 fm have been
used. The full dots represent 3-dimensional screened Coulomb t-
matrix obtained by direct solution of the 3-dimensional LS equa-
tion. The partial wave summation up to maximal angular momen-
tum lmax = 3, 5 and 10 are given by dotted, dashed and solid lines,
respectively.

This inability to understand the pp QFS and pd SST
cross sections calls for reconsidering the inclusion of the
Coulomb force into momentum space Faddeev calculations.
One main concern in such type of calculations is the appli-
cation of a partial wave decomposition to the long-ranged
Coulomb force. Even when screening is applied it seems
reasonable to treat from the beginning the screened pp Cou-
lomb t-matrix without partial wave decomposition because
the required limit of vanishing screening leads necessarily
to a drastic increase of the number of partial wave states
involved. As an example we provide numbers for the expo-
nential screening of the forme−( r

R )n
. Taking the screening

radiusR = 20 fm andn = 4 requires alll ≤ lmax = 10 par-
tial wave states to reproduce the 3-dimensional pp screened
Coulomb t-matrix atElab

p = 13 MeV (see Fig.1). Increas-
ing the screening radius toR = 120 fm requires at least
lmax = 50 (see Fig.2) which is a big numerical challenge.

Even more that would lead to an explosion of the number
of 3N partial waves required for convergence.
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Fig. 2. (color online) The real and imaginary parts of the proton-
proton on-shell screened Coulomb t-matrix atElab

p = 13 MeV as
a function of the cosine of scattering angle x. The exponential
screening withn = 4 and screening radiusR = 120 fm have been
used. The full dots represent 3-dimensional screened Coulomb t-
matrix obtained by direct solution of the 3-dimensional LS equa-
tion. The partial wave summation up to maximal angular momen-
tum lmax = 10, 20, 30 and 50 are given by dashed-dotted, dotted,
dashed and solid lines, respectively.

In [16,17] we proposed a novel approach to incorpo-
rate the pp Coulomb force into the momentum space Fad-
deev calculations, in which we apply directly the 3-dimen-
sional screened pp Coulomb t-matrix without relying on
a partial wave decomposition. 3-dimensional solutions of
the LS equation for different screening radii are used to
approach the final predictions. We demonstrated, that the
physical elastic pd scattering amplitude has a well defined
screening limit and does not require renormalisation. In
contrast, in case of pp scattering the scattering amplitude
requires renormalisation in the screening limit which, how-
ever, has not to be applied when only observables have to
be addressed [18]. In case of the pd breakup the on-shell
solutions of the Faddeev equation are required [17]. They
demand renormalisation in the screening limit which can
be achieved through renormalisation of the pp t-matrices.

In section 2 we present the main points of the for-
malism outlined in details in [16,17]. The pd elastic and
breakup transition amplitudes are shown in section 3. The
screening limit for pd elastic scattering and breakup is dis-
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cussed in section 4 and the results shown in section 5. The
summary is given in section 6.

2 Faddeev equations with screened pp
Coulomb force

We use the Faddeev equation in the form [5]

T |Φ >= tP|Φ > +tPG0T |Φ > (1)

whereP is defined in terms of transposition operators,P =
P12P23 + P13P23, G0 is the free 3N propagator,|Φ > the
initial state composed of a deuteron state and a momentum
eigenstate of the proton. KnowingT |Φ > the breakup as
well as the elastic pd scattering amplitudes can be gained
by quadratures in the standard manner [5].

We use our standard momentum space partial wave ba-
sis |pqα̃ >

|pqα̃ >≡ |pq(ls) j(λ
1
2

)I( jI)J(t
1
2

)T > (2)

and distinguish between the partial wave states|pqα >with
total 2N angular momentumj below some valuejmax: j ≤
jmax, in which the nuclear,VN , as well as the pp screened
Coulomb interaction,VR

c (in isospint = 1 states only), are
acting, and the states|pqβ > with j > jmax, for which only
VR

c is acting in the pp subsystem. The states|pqα > and
|pqβ > form a complete system of states

I =
∫

p2dpq2dq
∑

α̃

|pqα̃〉 〈pqα̃|

≡
∫

p2dpq2dq(
∑

α

|pqα〉 〈pqα| +
∑

β

|pqβ〉 〈pqβ|) .(3)

Projecting (1) forT |Φ > on the|pqα > and |pqβ > states
one gets the following system of coupled integral equations

〈pqα|T |Φ〉 = 〈pqα| tR
N+cP |Φ〉

+ 〈pqα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

+ 〈pqα| tR
N+cPG0

∑

β′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′β′
〉

×
〈

p′q′β′
∣

∣

∣T |Φ〉 (4)

〈pqβ|T |Φ〉 = 〈pqβ| tR
c P |Φ〉

+ 〈pqβ| tR
c PG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

+ 〈pqβ| tR
c PG0

∑

β′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′β′
〉

×
〈

p′q′β′
∣

∣

∣T |Φ〉 (5)

wheretR
N+c andtR

c are t-matrices generated by the interac-
tionsVN +VR

c andVR
c , respectively. Namely for states|α >

with two-nucleon subsystem isospint = 1 the correspond-
ing t-matrix element< pα|tR

N+c(E−
3

4m q2)|p′α′ > is a linear
combination of the pp,tR

pp+c, and the neutron-proton (np),
tnp, t = 1 t-matrices, which are generated by the interac-
tionsV strong

pp +VR
c andV strong

np , respectively. The coefficients
of that combination depend on the total isospinT andT ′

of states|α > and|α′ > [16,19]:

< t = 1T =
1
2
|tR

N+c |t
′
= 1T ′ =

1
2
> =

1
3

tnp +
2
3

tR
pp+c

< t = 1T =
3
2
|tR

N+c |t
′
= 1T ′ =

3
2
> =

2
3

tnp +
1
3

tR
pp+c

< t = 1T =
1
2
|tR

N+c |t
′
= 1T ′ =

3
2
> =

√
2

3
(tnp − tR

pp+c)

< t = 1T =
3
2
|tR

N+c |t′ = 1T ′ =
1
2
> =

√
2

3
(tnp − tR

pp+c)(6)

For isospint = 0, in which caseT = T ′ = 1
2:

< t = 0T =
1
2
|tR

N+c |t
′
= 0T ′ =

1
2
> = tnp . (7)

In case oftR
c only the screened pp Coulomb forceVR

c is
acting.

The third term on the right hand side of (5) is propor-
tional to< pqβ|tR

c PG0|p′q′β′ >< p′q′β′|tR
c . A direct calcu-

lation of its isospin part shows that independently from the
value of the total isospinT it vanishes [16].

Inserting< pqβ|T |Φ > from (5) into (4) one gets

〈pqα|T |Φ〉 = 〈pqα| tR
N+cP |Φ〉 + 〈pqα| tR

N+cPG0tR
c P |Φ〉

− < pqα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c P |Φ〉

+ 〈pqα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

+ 〈pqα| tR
N+cPG0tR

c PG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

− 〈pqα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c PG0

∑

α′′

∫

p′′2dp′′q′′2dq′′
∣

∣

∣p′′q′′α′′
〉

×
〈

p′′q′′α′′
∣

∣

∣T |Φ〉 . (8)

This is a coupled set of integral equations in the space of
the states|α > only, which incorporates the contributions
of the pp Coulomb interaction from all partial wave states
up to infinity. It can be solved by iteration and Pade sum-
mation [5,16].

When compared to our standard treatment without scree-
ned Coulomb force [5] there are two new leading terms
< pqα|tR

N+cPG0tR
c P|Φ > and -< pqα|tR

N+cPG0|α′ >< α′|tR
c P

|Φ >. The first term must be calculated using directly the 3-
dimensional screened Coulomb t-matrixtR

c , while the sec-
ond term requires partial wave projected screened Coulomb
t-matrix elements in the|α > channels only. The kernel also
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contains two new terms. The term< pqα|tR
N+cPG0tR

c PG0

|α′ >< α′|T |Φ >must again be calculated with a 3-dimen-
sional screened Coulomb t-matrix while the second one,
-< pqα|tR

N+cPG0|α′ >< α′|tR
c PG0|α′′ >< α′′|T |Φ >, in-

volves only the partial wave projected screened Coulomb
t-matrix elements in the|α > channels. The calculation of
the new terms with the partial wave projected Coulomb t-
matrices follows our standard procedure. Namely the two
sub kernelstR

N+cPG0 andtR
c PG0 are applied consecutively

on the corresponding state. The detailed expressions how
to calculate the new terms with the 3-dimensional screened
Coulomb t-matrix are given in Appendix A of Ref. [16].

3 The pd elastic and breakup transition
amplitudes

The transition amplitude for pd elastic scattering is given
by [5,20]

〈

Φ′
∣

∣

∣U |Φ〉 =
〈

Φ′
∣

∣

∣ PG−1
0 + PT |Φ〉 . (9)

That amplitude has two contributions. The first one is in-
dependent of the pp Coulomb force [16]

< Φ′|PG−1
0 |Φ >=< Φ

′|PV |Φ >= −1
2
< φ′|P00V

00
np |φ > ,(10)

whereP00 acts only in spin-momentum space

Ptt′ = P12P23 + (−)t+t′P13P23|spin−momentum . (11)

To calculate the second part of the matrix element (9)
one needs〈pq | T |Φ〉 composed of low and high partial
wave contributions forT |Φ >. It enters also the transi-
tion amplitude for breakup< Φ0|U0|Φ > which is given
in terms ofT |Φ〉 by [5,20]

〈Φ0|U0 |Φ〉 = 〈Φ0| (1+ P)T |Φ〉 (12)

where|Φ0 >= |pqmiνi > (i = 1, 2, 3) is the free state. The
permutations acting in momentum-, spin-, and isospin-spa-
ces can be applied to the bra-state< φ0| =< pqmiνi| chang-
ing the sequence of nucleons spin and isospin magnetic
quantum numbersmi andνi and leading to well known lin-
ear combinations of the Jacobi momentap, q. Thus evalu-
ating (12) it is sufficient to regard the general amplitudes
< pqm1m2m3ν1ν2ν3|T |Φ〉 ≡ 〈pq | T |Φ〉. Using Eq. (1) and
the completness relation (3) one gets:

〈pq | T |Φ〉 = 〈pq |
∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

− 〈pq |
∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c P |Φ〉

− 〈pq |
∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c PG0

∑

α′′

∫

p′′2dp′′q′′2dq′′
∣

∣

∣p′′q′′α′′
〉

×
〈

p′′q′′α′′
∣

∣

∣T |Φ〉
+ 〈pq | tR

c P |Φ〉

+ 〈pq | tR
c PG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉 . (13)

It follows, that in addition to the Faddeev amplitudes
< pqα|T |Φ > also the partial wave projected amplitudes
< pqα|tR

c P|Φ > and< pqα|tR
c PG0|α′ >< α′|T |Φ > are re-

quired. The expressions for the contributions of these three
terms to the transition amplitude for elastic scattering and
breakup reaction are given in Appendix B of Ref. [16].

The last two terms in (13) again must be calculated us-
ing directly 3-dimensional screened Coulomb t-matrices.
In Appendix C of Ref. [16] the expression for〈pq | tR

c P |Φ〉
and in Appendix D of Ref. [16] the last matrix element
< pq |tR

c PG0|α′ >< α′|T |Φ > are given.

4 The screening limit

The set of coupled Faddeev equations (8) is well defined
for a finite screening radius. It is an exact set assuming that
the strong NN t-matrix can be neglected beyond a certain
jmax, which is justified. Further the pp screened Coulomb
force is taken into account to infinite order in the partial
wave decomposition in form of the 3-dimensional screened
Coulomb t-matrixtcR

pp. The important challenge is to con-
trol the screening limit for the physical pd elastic scattering
amplitude (9) and for the physical pd breakup amplitude
(12).

For the pd elastic scattering the contribution (10) is
well defined and independent of the Coulomb force. The
corresponding expression without partial-wave expansion
is given in Appendix C (C.5) of [16]. In [16] analytical
arguments were provided that also other terms contribut-
ing to the elastic scattering amplitude has a well defined
screening limit and does not require renormalisation. Thus
also the physical on-shell elastic pd amplitude has a well
defined screening limit and does not require renormalisa-
tion. This can be traced back to the fact that to get the elas-
tic pd scattering amplitude it is sufficients to solve the Fad-
deev equations (8) for off-shell values of the Jacobi mo-
menta

p2

m
+

3
4m

q2
, E . (14)

The off-shell Faddeev amplitudes〈pqα|T |Φ〉 of Eq.(8) are
determined by off-shell nucleon-nucleon t-matrix elements
t(p, p′; E− 3

4m q2), which have a well defined screening limit
(see the following discussion and examples).

The case of the pd breakup process is quite different.
Contrary to pd elastic scattering the physical breakup am-
plitude (12) corresponds to the on-shell values of Jacobi
momenta

p2

m
+

3
4m

q2
= E ≡

3
4m

q2
max . (15)

That means that the physical pd breakup amplitude (12) re-
quires on-shell Faddeev amplitudes〈p0qα|T |Φ〉 together
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with the four, also on-shell, additional terms in (13), with

p0 =

√

3
4(q2

max − q2). The on-shell Faddeev amplitudes can
be obtained from the off-shell solutions〈pqα| T |Φ〉 using
(8):

〈p0qα| T |Φ〉 = 〈p0qα| tR
N+cP |Φ〉

+ 〈p0qα| tR
N+cPG0tR

c P |Φ〉

− 〈p0qα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c P |Φ〉

+ 〈p0qα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

+ 〈p0qα| tR
N+cPG0tR

c PG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣T |Φ〉

− 〈p0qα| tR
N+cPG0

∑

α′

∫

p′2dp′q′2dq′
∣

∣

∣p′q′α′
〉

×
〈

p′q′α′
∣

∣

∣ tR
c PG0

∑

α′′

∫

p′′2dp′′q′′2dq′′
∣

∣

∣p′′q′′α′′
〉

×
〈

p′′q′′α′′
∣

∣

∣T |Φ〉 . (16)

These on-shell amplitudes together with additional, also
on-shell, terms in (13) define the physical breakup ampli-
tude (12). That in consequence requires half-shell t-matrix

elementst(p0, p′;
p2

0

m ) which are of 3 types: the partial wave
projected pure screened CoulombtR

c generated byVR
c , the

partial wave projectedtR
N+c generated byVstrong + VR

c , and
the 3-dimensional screened Coulomb matrix elements.

It is well known [1,21,22] that in the screening limit
R → ∞ such half-shell t-matrices acquire an infinitely os-
cillating phase factoreiΦR(p), whereΦR(p) depends on the
type of the screening. For the exponential screening used
in the present study its form depends on two parameters,
the screening radiusR and the powern:

VR
c (r) =

α

r
e−( r

R )n

. (17)

At a given valuen the pure Coulomb potential results for
R → ∞. As has been shown in [23] based on [24,25], the
related phaseΦR(p) is given as

ΦR(p) = −η[ln(2pR) − ǫ/n] (18)

whereǫ = 0.5772. . . is the Euler number andη = mpα

2p the
Sommerfeld parameter.

Contrary to the half-shell, the off-shell t-matrix ele-
ments do not acquire such an oscillating phase and their
screening limit is well defined.

In Figs. 3-4 we demonstrate that behavior for the 3-
dimensional half-shell screened Coulomb pp t-matrix [18].
Increasing the screening radius R changes drastically the
imaginary part of the t-matrix (Fig. 4a). The real part is
more stable but does not approach the pure Coulomb limit
(Fig. 3a). Renormalizing by the phase factore−iΦR(p) of
Eq. (18) provides a well defined limit to the pure Coulomb
half-shell result of Ref. [26] (Fig. 3b and 4b).
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Fig. 3. (color online) The real part of the nonrenormalized (a) and
renormalized (b) 3-dimensional half-shell screened Coulomb pp

t-matrix tR
c (p0, p′, x;

p2
0

m ). The lines correspond to the exponential
screening withn = 1 and different screening radia:R = 20 fm
(black dotted line),R = 60 fm (blue dashed-dotted line),R =
120 fm (red dashed line),R = 180 fm (black solid line). The
Coulomb half-shell result of Ref. [26] is given by thick dots. The
momentump0 = 0.396 fm−1 andx = 0.706.

For the 3-dimensional off-shell screened Coulomb pp t-
matrix the pure Coulomb screening limit of Ref. [28,27] is
achieved without any renormalisation factor for screening
radiaR > 20 fm (Fig. 5).

Analogous behavior for the partial wave decomposed
l = 0 half-shell screened CoulombtR

c and the1S 0 tR
pp+c

t-matrices is shown in Figs. 6 and 7, respectively. While
the imaginary part again exhibits drastic changes when the
screening radius increases (Fig. 6a and 7a), removing the
phase factore−iΦR(p) (renormalisation) provides a well de-
fined limit for the screening radiaR > 40 fm (Fig. 6b and
7b). It is seen that in case when the screened Coulomb po-
tential is combined with the strong force also the real part
of the half-shell t-matrix undergoes strong changes with
increased screening (Fig. 7a).

For the partial wave decomposed off-shell l = 0 scr-
eened CoulombtR

c and the1S 0 tR
pp+c t-matrix elements a

well defined screening limit is reached without any renor-
malisation (Fig. 8b and 8a, respectively).

That oscillatory phase factor appearing in the half-shell
proton-proton t-matrices requires a carefull treatment of
(16) to get the screening limit for the〈p0qα|T |Φ〉 ampli-
tudes. Namely for the states|α >with the two-nucleon sub-
system isospint = 1 the corresponding t-matrix element
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Fig. 4. (color online) The imaginary part of the nonrenormal-
ized (a) and renormalized (b) 3-dimensional half-shell screened

Coulomb pp t-matrixtR
c (p0, p′, x;

p2
0

m ). For the description of the
lines and values ofp0 andx see Fig. 3.
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Fig. 5. (color online) The 3-dimensional off-shell screened

Coulomb pp t-matrixtR
c (p, p′, x;− p2

0
m ). The lines correspond to the

exponential screening withn = 1 and different screening radia:
R = 20 fm (black dotted line),R = 60 fm (blue dashed-dotted
line), R = 120 fm (red dashed line),R = 180 fm (black solid
line). The Coulomb off-shell result of Ref. [28,27] is given by
thick dots. The momentump0 = 0.396 fm−1, p = 0.375 fm−1 and
x = 0.706.

< p0α|tR
N+c(

p2
0

m )|p′α′ > is a linear combination of the pp
and neutron-proton (np)t = 1 t-matrices, the coefficients
of which depend on the total isospin T and T’ of the states
|α > and |α′ > (see discussion after (5)). It follows that
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} 
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a) b)

Fig. 6. (color online) The real (upper panels) and imaginary
(lower panels) parts of the nonrenormalized (a) and renormalized

(b) l = 0 half-shell screened Coulomb pp t-matrixtR
c (p0, p′,

p2
0

m ).
The lines correspond to the exponential screening withn = 1
and different screening radia:R = 20 fm (black dotted line),R =
40 fm (blue short-dashed line),R = 60 fm (brown long-dashed
line), R = 80 fm (red short-dashed-dotted line),R = 100 fm (ma-
roon long-dashed-dotted line),R = 120 fm (green short-dashed-
double-dotted line),R = 140 fm (blue solid line). The momentum
p0 = 0.26 fm−1.

to achieve the screening limit one needs to renormalize the
pp t-matrixtR

pp+c in that combination before performing the
action of the operators in (16). The term in that linear com-
bination coming with the np t-matrixtnp does not require
renormalisation.

5 Numerical results

To demonstrate the feasibility of our approach we applied
the outlined formalism to a simple dynamical model in
which the nucleon-nucleon force was restricted to act in
1S 0 and3S 1 −3 D1 partial waves only and taken from the
CD Bonn potential [29]. The proton-proton Coulomb force
was modified by the exponential screening (17) with the
screening radiusR andn = 1.

To investigate the screening limitR→ ∞ we generated
set of partial-wave decomposed t-matrices,tR

c , based on
the screened pp Coulomb force only or combined with the
strong pp interaction,tR

pp+c, takingR = 20, 40, 60, 80, 100,
120 and 140 fm. With that dynamical input we solved the
set of Faddeev equations (8) for off-shell values of the Ja-
cobi momentap andq and for the total angular momenta
of the p-p-n system up toJ ≤ 15

2 andboth parities. Then
the on-shell Faddeev amplitudes〈p0qα| T |Φ〉 were gained
through (16). In this first study we restricted ourselves to
the perturbative approximation for the 3-dimensional scr-
eened Coulomb t-matrix:tR

c = VR
c . In the future studies that

approximation will be avoided and the full solution of the
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Fig. 7. (color online) The real (upper panels) and imaginary
(lower panels) parts of the nonrenormalized (a) and renormal-

ized (b)1S 0 half-shell pp t-matrixtR
pp+c(p0, p′,

p2
0

m ). The lines cor-
respond to the exponential screening withn = 1 and different
screening radia:R = 20 fm (black dotted line),R = 40 fm
(blue short-dashed line),R = 60 fm (brown long-dashed line),
R = 80 fm (red short-dashed-dotted line),R = 100 fm (ma-
roon long-dashed-dotted line),R = 120 fm (green short-dashed-
double-dotted line),R = 140 fm (blue solid line). The momentum
p0 = 0.26 fm−1.

6

7

8

9

10

R
e{

t pp
+

cR
(1 S

0)}
 [M

eV
 fm

3 ]

0,14

0,15

0,16

0,17

R
e{

t cR
(l=

0)
} 

[M
eV

 fm
3 ]

0 0,4 0,8

p’ [fm
-1

]

5

6

7

8

9

Im
{t

pp
+

cR
(1 S

0)}
 [M

eV
 fm

3 ]

0 0,4 0,8

p’ [fm
-1

]

-0,04

-0,03

-0,02

-0,01

0,00

Im
{t

cR
(l=

0)
} 

[M
eV

 fm
3 ]

a)

b)

a)

b)

Fig. 8. (color online) The real (upper panels) and imaginary

(lower panels) parts of the1S 0 tR
pp+c(p, p′,

p2
0

m ) (a) and thel = 0

screened CoulombtR
c (p, p′,

p2
0

m ) (b) off-shell t-matrices. For the
description of the lines see Fig. 6. The momentump0 = 0.26 fm−1

andp = 2.38 fm−1.

3-dimensional LS equation for the screened pp Coulomb
t-matrix will be used [18]. When calculating observables
we also omitted the last term in (13) coming with the 3-
dimensional screened Coulomb t-matrix,

〈

pq|tR
c PG0T |Φ

〉

.
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Fig. 9. (color online) The convergence in the cut-off radius R of
the pd elastic scattering cross sectiondσ

dΩ shown as a function of
the c.m. angleΘc.m. at the incoming proton energyElab

p = 13 MeV.
These cross sections were calculated with the screened Coulomb
force and the CD Bonn nucleon-nucleon potential [29] restricted
to the 1S 0 and 3S 1-3D1 partial waves. The screening radii are :
R = 20 fm (black dotted line),R = 40 fm (green double-dashed -
dotted line),R = 60 fm (blue long-dashed-dotted line),R = 80 fm
(red dashed- double-dotted line),R = 100 fm (blue short-dashed
line), R = 120 fm (red long-dashed line),R = 140 fm (black solid
line). TheR = 40-140 fm lines are practically overlapping. The
black dashed-dotted line is the corresponding nd elastic scattering
cross section. The pluses areElab

p = 12 MeV pd elastic scattering
cross section data of Ref. [30].
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Fig. 10. (color online) The convergence in the cut-off radius R of
the pd elastic scattering cross sectiondσ

dΩ at the incoming proton

energyElab
p = 13 MeV, shown as the ratiodσdΩ

R
/ dσ

dΩ

R=140
. For the

description of the lines see Fig. 9.

In Fig. 9 we show the convergence in the screening ra-
dius R of the pd elastic scattering cross section and com-
pare the pd and nd elastic scattering angular distributions
at the incoming nucleon energyElab

N = 13 MeV. On the
scale of the figure the cross sections forR = 40− 140 fm
are practically indistinguishable. The detailed picture of
that convergence is depicted in Fig. 10, where the ratio of
the cross sections obtained with the screening radiusR to
those withR = 140 fm is shown as a function of the c.m.
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Fig. 11. The contributions of different terms to the pd elas-
tic scattering cross sectiondσdΩ at the incoming proton energy
Elab

p = 13 MeV calculated with the screening radiusR = 100 fm.
The dotted and dashed lines are contributions of the〈Φ′ |PT |Φ〉
and
〈

Φ′|PG−1
0 |Φ
〉

terms, respectively. The double-dashed-dotted

line is the contribution of the
〈

Φ′ |PtR
c P|Φ

〉

term coming with
the 3-dimensional screened Coulomb t-matrixtR

c . The dashed-
double-dotted and dashed-dotted lines are contributions of the
〈

Φ′ |PtR
c P|Φ

〉

and
〈

Φ′ |PtR
c PG0T |Φ

〉

terms, respectively, which are
calculated with the partial-wave decomposed screened Coulomb
t-matrix. The solid line encompasses all terms. In this feasibility
study the 3-dimensionaltR

c is replaced byVR
c .
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Fig. 12. (color online) The independence of the real (left column)
and imaginary (right column) parts of the partial wave contribu-
tion
〈

Φ′md′mp′
|P(T − tR

c P − tR
c PG0T )|Φmdmp

〉

to theElab
p = 13 MeV

pd elastic scattering transition amplitude on the cut-off radius R.
The different lines are:R = 20 fm - dotted,R = 40 fm - short-
dashed,R = 60 fm - long-dashed,R = 80 fm - short-dashed-
dotted,R = 100 fm - long-dashed-dotted,R = 120 fm - double-
dotted-dashed,R = 140 fm - solid. All the lines are practically
overlapping. The incoming and outgoing deuteron and proton
spin projections are for a):md = md′ = −1 andmp = mp′ = − 1

2
andfor b): md = −1, md′ = +1, andmp = mp′ = +

1
2 .

scattering angleΘc.m.. It is clearly seen that already with
the screening radiusR = 40 fm converged results for the
cross section are achieved. Increasing further the value of

R provides cross sections which differ less than≈ 1% up to
the forward scattering anglesΘc.m. ≈ 10o. At very forward
angles, where the pp Coulomb force is dominant, larger
screening radii are required to get the cross section with
the same precision.

The angular distributions shown in Figs. 9 and 10 were
obtained taking in the elastic scattering transition ampli-
tude (9) the exchange term

〈

Φ′|PG−1
0 |Φ
〉

together with the
first four terms in (13) contributing to〈Φ′|PT |Φ〉. In Fig. 11
we present how each term contributes to the cross section.
When all terms are taken into account the resulting angu-
lar distribution is given by the solid line. The< Φ′|PT
|Φ > term ( dotted line related to the first term in (13)) con-
tributes significantly at all angles. At backward angles the
largest contribution comes from the exchange term< Φ′|P
G−1

0 |Φ > (dashed line) while at forward angles the most

important is the “Rutherford” term
〈

Φ′|PtR
c P|Φ

〉

(double-
dashed-dotted line related to the fourth term in (13)) calcu-
lated with the 3-dimensional screened Coulomb t-matrixtR

c
(in this first study treated perturbatively astR

c = VR
c ). The

two terms based on the partial-wave projected Coulomb t-
matrix,< Φ′|PtR

c P|Φ > (dashed-double-dotted line related
to the second term in (13) ) and

〈

Φ′|PtR
c PG0T |Φ

〉

(dashed-
dotted line related to the third term in (13) ), are about 2-
orders of magnitude smaller and thus of minor importance.
The fact that at very forward angles the contribution of the
< Φ′| PtR

c PG0T |Φ > is an order of magnitude smaller than
the contribution of the

〈

Φ′|PtR
c P|Φ

〉

seems to justify the ne-

glection of the last term
〈

Φ′|PtR
c PG0T |Φ

〉

in (13) coming
with the 3-dimensional screened Coulomb t-matrix. In fu-
ture studies this term will be calculated to verify this state-
ment.

In Fig. 12 we demonstrate numerically that the elastic
pd amplitude has a well defined screening limit and does
not require renormalization. The real and imaginary parts
of the partial wave contribution< Φ′|P(T + tR

c P+ tR
c PG0T )

|Φ > to the elastic transition amplitude are shown for two
combinations of the incoming and outgoing deuteron and
proton spin projections and a number of screening radia
R = 20, 40, 60, 80, 100,120, and 140 fm. The additional
term (10) is real and independent of the screening radius.
The fourth term in (13) is also real under our approxima-
tion tR

c = VR
c and for angles different from zero has a well

defined screening limit. Moreover it is peaked in forward
direction and would dominate terms shown. All lines are
practically overlapping. That shows that not only the cross
section but the pd elastic scattering amplitude itself does
not develop an oscillating phase in the infinite screening
limit.

The results for the breakup reaction are shown in Figs.
13 - 16 where the exclusive cross sectionsd

5σ
dΩ1Ω2dS for the

QFS and SST configurations parametrized through the arc-
length of the kinematical S-curve are presented.

For the QFS and SST (see Fig. 13 and 15, respectively)
the convergence in the screening radius is achieved atR =
60 fm. For QFS the Coulomb force decreases the cross sec-
tion with respect to the nd case and brings the theory close
to the pd data. For SST the Coulomb force also brings the-
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Fig. 13. (color online) The convergence in the cut-off radius R
of thed(p, p1p2)n breakup cross section in a kinematically com-
plete QFS configuration with polar angles of the two outgoing
protonsθ1 = θ2 = 39o and azimuthal angleφ12 = 180o. The
incoming proton energy isElab

p = 13 MeV and theoretical predic-
tions are based on a screened Coulomb force and the CD Bonn
nucleon-nucleon potential [29] restricted to1S 0 and3S 1-3D1 par-
tial waves. The screening radius is:R = 20 fm (black dotted line),
R = 40 fm (green dashed-double-dotted line),R = 60 fm (blue
dashed-dotted line),R = 80 fm (red double-dashed-dotted line),
R = 100 fm (blue dashed line),R = 120 fm (red long-dashed
line), R = 140 fm (black solid line). The black long-dashed-
dotted line is the break-up cross section with the pp Coulomb in-
teraction switched-off. The pluses areElab

p = 13 MeV pd breakup
data of Ref. [11].

ory close to the pd data, however, only at S-values close to
the space-star condition (S ≈ 6 MeV). For S-values further
away the theory is far above the pd data.

The theoretical prediction for both geometries results
through interference of different terms contributing to the
breakup amplitude. The importance and magnitudes of the
contributions coming from different terms in the breakup
amplitude differs for those two geometries (see Fig. 14 and
Fig. 16). In both cases the largest is the contribution of
the first term in (13)< Φ0|(1 + P)|α > < α|T |Φ > (black
dashed-dotted line in Figs. 14 and 16). For QFS and SST
the cross section resulting from that term is below the pd
data and below the full result which encompasses all terms
(solid line). The magnitudes of three additional terms:<
Φ0|(1 + P) tR

c P|Φ > (the fourth term in (13) calculated
with the 3-dimensional screened Coulomb t-matrix, here
approximated byVR

c , and given by the green short-dashed
line), the second term in (13)

〈

Φ0|(1+ P)|α >< α|tR
c P|Φ

〉

(calculated with the partial-wave projected screened Cou-
lomb t-matrix and given by the blue dashed-double-dotted
line), and the third term in (13)< Φ0|(1+P)|α >< α|tR

c PG0
T |Φ > (calculated again with the partial-wave projected
screened Coulomb t-matrix and given by the maroon double-
dashed-dotted line), are small. Because they are difficult to
see on the scale of Figs. 14a and Fig. 16a they are again
presented in the part b) of these figures. For both configura-
tions the term with the 3-dimensional t-matrix< Φ0|(1+P)
tR
c P|Φ > gives the smallest contribution. Smallness of these
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Fig. 14. (color online) In part a): the contribution of different
terms to the cross section of the QFS configuration of Fig. 13.
The (black) dashed-dotted line is the contribution of the first term
〈Φ0|(1+ P)|α >< α|T |Φ〉 in (13) and the (green) short-dashed
line is the contribution of the fourth term

〈

Φ0|(1+ P)tR
c P|Φ

〉

in (13) coming with the 3-dimensional screened Coulomb t-
matrix tR

c (in the present calculationtR
c = VR

c ). The (blue)
dashed-double-dotted and (maroon) double-dashed-dotted lines
are contributions of the second

〈

Φ0|(1+ P)|α >< α|tR
c P|Φ

〉

and

of the third
〈

Φ0|(1+ P)|α >< α|tR
c PG0T |Φ

〉

term in (13), re-
spectively, which are calculated with partial-wave decomposed
screened Coulomb t-matrix. The (black) dotted and (blue) long-
dashed lines result from the

〈

Φ0|(1+ P)|α >< α|(T − tR
c P)|Φ

〉

and
〈

Φ0|(1+ P)|α >< α|(T − tR
c PG0T )|Φ

〉

amplitudes, respec-
tively. The (red) long-dashed line is the contribution of
the
〈

Φ0|(1+ P)|α >< α|(T − tR
c P − tR

c PG0T )|Φ
〉

amplitude. The
(black) solid line encompasses all four terms. All results are for
screening radiusR = 100 fm. The part b) of the figure shows con-
tributions of small terms which are difficult to see on the scale of
part a).

terms does not mean however, that they are unimportant
because the interference effects are nonnegligible and act
in different ways for QFS and SST.

For the QFS the second largest contribution comes from
〈

Φ0|(1+ P)|α >< α|tR
c P|Φ

〉

(blue dashed-double-dotted li-
ne) while for SST it comes from< Φ0|(1+P)|α >< α|tR

c PG0
T |Φ > (maroon double-dashed-dotted line). For QFS and
SST taking the amplitude of that second largest contribu-
tion together with〈Φ0|(1+ P)|α >< α|T |Φ〉 changes sig-
nificantly the cross section. For QFS it is the black dot-
ted line in Fig. 14a resulting from< Φ0|(1 + P)|α > <
α|(T −tR

c P)|Φ > while for SST it is blue long-dashed line in
Fig. 16a resulting from< Φ0|(1+ P)|α >< α|(T− tR

c PG0T )
|Φ >.

The third largest contribution provides for both config-
urations smaller changes of the cross section and the re-
sult when the second and third largest contributions are in-

05003-p.9



EPJ Web of Conferences

0 4 8 12
S [MeV]

0,0

0,5

1,0

1,5

d5 σ/
dΩ

1dΩ
2dS

 [m
b 

sr-2
 M

eV
-1

]

Fig. 15. (color online) The convergence in the cut-off radius R of
thed(p, p1p2)n breakup cross section in a kinematically complete
SST configuration with polar angles of the two outgoing protons
θ1 = θ2 = 50.5o and azimuthal angleφ12 = 120o. The incom-
ing proton energy isElab

p = 13 MeV and the theoretical predic-
tions are based on the screened Coulomb force and the CD Bonn
nucleon-nucleon potential [29] restricted to1S 0 and3S 1-3D1 par-
tial waves. For the description of the lines see Fig. 13. The x-es
areElab

p = 13 MeV pd breakup data of Ref. [11] and pluses are
Elab

n = 13 MeV nd breakup data of Ref. [31].
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Fig. 16. (color online) In part a): the contribution of different
terms to the cross section of the SST configuration of Fig. 15.
The solid line encompasses all terms. For the description of other
lines see Fig. 14. All results are for screening radiusR = 100 fm.
The part b) of the figure shows contributions of small terms which
are difficult to see on the scale of part a).

cluded
〈

Φ0|(1+ P)|α >< α|(T − tR
c PG0T − tR

c P)|Φ
〉

is given
by the red long-dashed line. It is above the pd data for both
geometries.

Finally, including the smallest contribution from the 3-
dimensional screened Coulomb t-matrix

〈

Φ0|(1+ P)tR
c P|Φ

〉

brings the theory to the pd data for the QFS geometry at all

S-values and for the SST configuration at S-values close to
the space-star condition.

6 Summary and conclusions

We presented recently formulated novel approach to in-
clude the pp Coulomb force into the momentum space 3N
Faddeev calculations. It is based on a standard formulation
for short range forces and relies on a screening of the long-
range Coulomb interaction. In order to avoid all uncertain-
ties connected with an application of the partial wave ex-
pansion, unsuitable when working with long-range forces,
we apply directly the 3-dimensional pp screened Coulomb
t-matrix.

Using a simple dynamical model for the nuclear part of
the interaction we demonstrated the feasibility of that ap-
proach. We provided analytical arguments and showed nu-
merically that the physical elastic pd scattering amplitude
has a well defined screening limit and therefore does not
require renormalisation. Well converged elastic pd cross
sections have been achieved at finite screening radii.

For the pd breakup we demonstrated that, contrary to
the pd elastic scattering, where the resulting amplitudes do
not require renormalisation, it is unavoidable to perform
renormalisation of the pp half-shell t-matrices in order to
get the physical breakup amplitude. Namely that amplitude
has two contributions, one driven by the interaction in the
pp subsystem and second in the np subsystem. Only the
first part requires renormalisation.

We have shown that converged results for breakup can
be achieved with finite screening radia.

We calculated contributions of different terms to the
breakup cross section in QFS and SST configurations. The
action of different contributions leads to an interference
pattern, which is different for QFS and SST configurations.
In our restricted dynamical model the pp Coulomb interac-
tion brings the nd breakup cross sections close to the pd
data for the QFS configuration. Also for the SST geometry
in the vicinity of the space-star condition the pd theory is
close to the pd data. However, further away on the S-curve
the theory lies above the data.

In this first study the 3-dimensional screened pure Co-
ulomb t-matrix was replaced by the screened Coulomb po-
tential and only a small number of partial wave states for
the NN interaction was taken into account.

In future studies the perturbative approximation for the
3-dimensional screened Coulomb t-matrix will be avoided
and higher partial wave components of the nucleon-nucleon
interaction will be included.

Acknowledgments

This work was supported by the Polish 2008-2011 sci-
ence funds as the research project No. N N202 077435. It
was also partially supported by the Helmholtz Association
through funds provided to the virtual institute “Spin and
strong QCD”(VH-VI-231) and by the European Commu-
nity-Research Infrastructure Integrating Activity “Study of

05003-p.10



19th International IUPAP Conference on Few-Body Problems in Physics

Strongly Interacting M atter” (acronym HadronPhysics2, G- 30. W. Gruebler et al., Nucl. Phys. A398 (1983) 445.
rant Agreement n. 227431) under the Seventh Framework 31. H.R. Setze et al., Phys. Rev. C71 (2005) 034006.
Programme of EU. The numerical calculations have been 
performed on the supercomputer cluster of the JSC, Jülich,
Germany.

References

1. E.O. Alt, W. Sandhas, and H. Ziegelmann, Phys. Rev. 
C17 (1978) 1981.

2. E.O. Alt and W. Sandhas, Coulomb Interactions 
in Nuclear and Atomic Few-Body Collisions, (eds. 
F.S. Levin and D. Micha, Plenum, New York, 1996),
p .1.

3. E.O. Alt and M. Rauh, Phys. Rev. C49 (1994) R2285.
4. E. O. Alt, A. M. Mukhamedzhanov, M. M. Nishonov, 

and A. I. Sattarov, Phys. Rev. C65 (2002) 064613.
5. W. Glöckle, H. Witała, D. Huber, H. Kamada, J. Go- 

lak, Phys. Rep. 274 (1996) 107.
6. E. Epelbaum, Prog. Part. Nucl. Phys. 57 (2006) 654; 

and references therein.
7. A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C52 

(1995) R15.
8. A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. 

C72 (2005) 054004.
9. A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. 

C71 (2005) 054005.
10. E. Stephan et al., Phys. Rev. C76 (2007) 057001.
11. G. Rauprich et al., Nucl. Phys. A535 (1991) 313.
12. R. Großmann et al., Nucl. Phys. A603 (1996) 161.
13. H. Patberg et al., Phys. Rev. C53, (1996) 1497.
14. M. Allet et al., Few-Body Syst. 20 (1996) 27.
15. J. Zejma et al., Phys. Rev. C55 (1997) 42.
16. H. Witała, R. Skibiński, J. Golak, W. Glöckle, Eur. 

Phys. J. A41 (2009) 369.
17. H. Witała, R. Skibiński, J. Golak, W. Glöckle, Eur. 

Phys. J. A41 (2009) 385.
18. R. Skibiński, J. Golak, H. Witała, and W.Glöckle, Eur. 

Phys. J. A40 (2009) 215.
19. H. Witała, W. Glöckle, H.Kamada, Phys. Rev. C43 

(1991) 1619.
20. W. Glöckle, The Quantum Mechanical Few-Body 

Problem, (Springer Verlag, 1983).
21. W.F. Ford, Phys. Rev. 133 (1964) B1616.
22. W.F. Ford, J. Math. Phys. 7 (1966) 626.
23. M. Yamaguchi, H. Kamada, and Y. Koike, Prog. 

Theor. Phys. 114 (2005) 1323.
24. J.R. Taylor, Nuovo Cimento B23 (1974) 313.
25. M.D. Semon and J.R. Taylor, Nuovo Cimento A26 

(1975) 48.
26. L.P. Kok and H. van Haeringen, Phys. Rev. Lett. 46 

(1981) 1257.
27. L.P. Kok and H. van Haeringen, Phys. Rev. C21 (1980) 

512.
28. J.C.Y. Chen and A.C. Chen, Advances of Atomic and 

Molecular Physics, (eds. D.R. Bates and J. Estermann, 
Academic, New York, 1972), Vol. 8.

29. R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. 
C53 (1996) R1483.

05003-p.11


