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Forces in the systems of two opposite sign and three identical charges
coupled to the dynamical scalar field of the signum-Gordon model are inves-
tigated. Three-body force is present, and the exact formula for it is found.
Flipping the sign of one of the two charges changes not only the sign but
also the magnitude of the force. Both effects are due to nonlinearity of the
field equation.
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1. Introduction

As is well-known, relativistic scalar fields play the crucial roles in physics
of fundamental interactions from particle physics to cosmology. Topological
and non-topological solitons [1, 2], long lived oscillons [3], phenomena such
as the spontaneous symmetry breaking and Higgs mechanism [4], all can
hardly be considered without scalar fields. Not surprisingly, one can find
in literature a whole variety of field-theoretic models with scalar fields. We
have been interested in the so-called signum-Gordon model which involves
just one classical scalar field ϕ, real or complex. Its defining feature is the
V-shaped self-interaction potential proportional to the modulus of the field,
U(ϕ) = g|ϕ|, where g > 0 is the self-coupling constant. This model origi-
nated from investigations of perturbations of the ground state of a system of
harmonically coupled pendulums bouncing from a stiff rod in the constant
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gravitational field [5]. It has turned out that it has truly amazing proper-
ties. Its basic dynamical features, which do not depend on the dimension of
space-time, include a scale invariance of the on-shell type, and generically
a very fast, parabolic approach of the field to its ground state value ϕ = 0,
which is reached exactly on a finite distance. Because of the latter property,
the signum-Gordon field may formally be regarded as an ultramassive one,
because the massless or massive fields have a different asymptotic behavior
of Coulomb or Yukawa type, respectively.

Furthermore, in the case of real signum-Gordon field, the field equation
has the form

∂µ∂
µϕ = −g sign ϕ , (1)

where the sign function has the standard values±1 and sign 0 = 0. Thus, the
r.h.s. of this equation is piecewise constant, greatly facilitating construction
of interesting analytic solutions. In fact, its solutions include non-radiating
oscillons [6], as well as a whole family of self-similar fields [7]. In the case of
complex scalar field with the V-shaped self-interaction compact Q-balls were
found [8]. In all these cases pertinent exact analytic solutions were obtained.
Thus, the signum-Gordon model has turned out to be a very good theoretical
laboratory for studying the highly nontrivial, nonlinear dynamics of scalar
fields.

Recently, we have investigated forces exerted on static external charges
interacting with the real signum-Gordon field [9]. In particular, the force
Fqq(a) between two identical, separated by the distance a, point static
charges of the strength q has been calculated. It exactly vanishes when the
distance between the charges exceeds certain finite value a∗ that depends on
their strengths. Such unusual behavior is due to the fact that U ′ = g sign ϕ
remains finite even for arbitrarily small values of the field ϕ. This is similar
to the constant gravity force attracting a ball to floor. The scalar field forms
a compact cloud surrounding the charges. The force is attractive.

In the present paper we extend the work [9] by presenting two effects
that are due to nonlinearity of the signum-Gordon field. The point is that
in the case of one-dimensional space one can construct the exact solutions of
the inhomogeneous signum-Gordon equation (Eq. (4) below) for any number
of static, point-like external sources. This gives us the rare opportunity of
having full knowledge about the effects that are due to the self-interaction
of the signum-Gordon field — the mediating field for the forces between the
external charges. Specifically, we consider the force F−qq(a) between two
opposite static charges −q and q separated by the distance a, and the forces
in the system of three identical static charges. We obtain exact formulas
for the scalar mediating field and for the forces. In the −qq case, the field
and force vanish when the distance a exceeds the same finite value a∗ as in
the qq system investigated in [9]. The force is repulsive, as expected. Our
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new finding is that the magnitudes of the forces in the qq and −qq cases are
different, |F−qq(a)| 6= |Fq(a)|, as opposed to the case of charges coupled to
a free field, e.g., electric charges interacting with the electromagnetic field.
Our most interesting result, however, is the observation that in the case
of three charges a three-body force is present. It is clear that, in general,
one should expect N -body forces when there are N charges. These effects
are due to the nonlinearity of field equation and, therefore, are expected to
appear in other nonlinear field-theoretic models.

The plan of our paper is as follows. In the next section, we briefly
recall the method of calculating the forces, we explain how one can obtain
the pertinent solution of field equation, and we discuss the −qq case. The
three-body forces in the qqq case are calculated in Section 3. Summary and
remarks are collected in Section 4.

2. The force in the −qq case

We consider two static, point-like charges of the opposite sign interacting
with the dynamical real scalar field ϕ. The Lagrangian for this system has
the form (we use the c = ~ = 1 units)

L = 1
2∂µϕ∂

µϕ− g |ϕ|+ jϕ , (2)

where
j(x) = q δ(x− a)− q δ(x) . (3)

Here µ = 0, 1, and x ≡ x1 is the spatial coordinate in the one-dimensional
space. The charges are located at x = 0 and x = a > 0. The field equation
corresponding to this Lagrangian reads

∂µ∂
µϕ+ g sign ϕ = j(x) . (4)

The simplest way to obtain the sign ϕ term is first to regularize the field
potential, e.g., g |ϕ| → g

√
δ2 + ϕ2, and to take the limit δ → 0 in the term

g ϕ/
√
δ2 + ϕ2 that appears in the corresponding Euler–Lagrange equation.

Thus,
sign ϕ = lim

δ→0

ϕ√
δ2 + ϕ2

.

It is clear from this definition that sign 0 = 0. Such regularized version of
the signum-Gordon model, i.e., with δ > 0, was investigated on its own right
in [10].
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The force exerted on the charge −q located at x = 0 is given by the
total flux of momentum towards that charge, as explained in, e.g., [9, 11].
The momentum density and the flux of momentum are given by the energy-
momentum tensor of our system,

Tµν = ∂µϕ∂νϕ− ηµνL , (5)

where (ηµν) = diag(1,−1) is the Minkowski metric.
The total momentum P 1 of the field, given by

P 1 = −
∫
dx T01 = −

∫
dx ∂0ϕ ∂xϕ

vanishes in the case of static fields we consider. The presence of the point
charges breaks the translational symmetry. In consequence, instead of the
continuity equation ∂µTµν = 0 we have

∂µTµν = −ϕ∂νj . (6)

The flux of momentum along the x axis is given by T11 = (∂xϕ)
2/2−g |ϕ|

if x 6= 0, a. By the definition, the force exerted on the charge located at x = 0
is given by the rate at which the momentum is transferred to that charge.
Hence,

F 1 = T11|x=−ε − T11|x=ε . (7)

Here, ε can be any number from the interval (0, a), because in the static case
the identity (6) implies that T11 does not depend on x in the open intervals
(−∞, 0), (0, a), (a,∞), in which j = 0. Furthermore, we will see that the
pertinent solution ϕ and T11 vanish in the interval (−∞,−d0), where d0 > 0
is a constant. Therefore, T11|x=−ε = 0, and formula (7) is simplified to

F 1 = − T11|x=ε . (8)

It remains to find the field ϕ in the presence of the sources. In the static
case it satisfies the equation

∂2xϕ− g sign ϕ = qδ(x)− qδ(x− a) . (9)

In order to ensure finiteness of the total energy E =
∫
dx T00, where T00 =

(∂xϕ)
2/2+g|ϕ|, the field ϕ and ∂xϕ should vanish for |x| → ∞. Furthermore,

integrating both sides of Eq. (9) over intervals of the half-length δ < a around
x = 0 and x = a, we obtain the conditions

∂xϕ(δ)− ∂xϕ(−δ) = q , ∂xϕ(a+ δ)− ∂xϕ(a− δ) = −q , (10)
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which are the one-dimensional counterpart of the Gauss law of electrostatics.
These conditions imply that ∂xϕ is discontinuous at the locations of the
charges.

Obvious approach to solving Eq. (9) is first to find solutions of the ho-
mogeneous equation

∂2xϕ− g sign ϕ = 0 (11)

in the open intervals (−∞, 0), (0, a) and (a,∞). Next, we glue them at
x = 0, x = a, so that ϕ is a continuous function of x at these points, and
the conditions (10), in which we may take the limit δ → 0+, are satisfied.

The general solution of Eq. (11) in the interval in which ϕ > 0, i.e.,
sign ϕ = +1, has the form

ϕ(x) =
g

2
x2 +Ax+B , (12)

and if sign ϕ = −1 then

ϕ(x) = −g
2
x2 + Cx+D , (13)

where A,B,C,D are constants to be determined from the matching con-
ditions. There also exists the trivial solution ϕ = 0 which represents the
ground state of the classical signum-Gordon field. Our Ansatz for the solu-
tion has the following form

ϕ−qq(x) =



0 x ≤ −d0 ,
u1(x) x ∈ [−d0, 0] ,
u2(x) x ∈ [0, d1] ,
u3(x) x ∈ [d1, a] ,
u4(x) x ∈ [a, a+ d2] ,
0 x ≥ a+ d2 ,

(14)

where d0 > 0, d2 > 0, d1 ∈ (0, a) are constants to be determined. The
functions u1, u2 are negative inside their domains and have the form (13),
while u3, u4 are positive and have the form (12), see Fig. 1.

The function u1 matches the ground state solution ϕ = 0 at the point
x = −d0. The matching conditions are the continuity of ϕ and ∂xϕ. Trivial
calculation gives

u1(x) = −
g

2
(x+ d0)

2 . (15)

The function u2 obeys the conditions

u2(0) = u1(0) , ∂xu2(0)− ∂xu1(0) = q , u2(d1) = 0 .
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Fig. 1. Schematic picture of the nontrivial part of the solution (14) for the −qq case.

Simple calculations give

u2(x) = −
g

2
(d1 − x)

(
d20
d1
− x
)
, (16)

and the relation
(d0 + d1)

2 =
2q

g
d1 . (17)

The function u4 has the general form (12) with the coefficients A,B
determined from the conditions u4(a + d2) = 0, ∂xu4(a + d2) = 0, which
ensure the correct matching of u4 with the trivial solution ϕ = 0 at the point
x = a+ d2. It turns out that

u4(x) =
g

2
(x− a− d2)2 . (18)

The function u3 of the general form (12) has to obey four conditions:
the matching conditions with the function u2 at the point x = d1, i.e.,
u3(d1) = 0, ∂xu2(d1) = ∂xu3(d1), and the conditions u3(a) = u4(a), ∂xu3(a)−
∂xu4(a) = q at the point x = a. These conditions determine the precise form
of u3, namely

u3(x) =
g

2
(x− d1)

(
x− 2d1 +

d20
d1

)
, (19)

and also give the following relations

(d2 + a− d1)2 =
2q

g
(a− d1) , 2d1 + d0 = a+ d2 . (20)

These relations, together with (17) fix the constants d0, d1, d2

d0 = d2 =

√
qa

g
− a

2
, d1 =

a

2
. (21)
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The force exerted on the charge −q located at x = 0 is given by for-
mula (8), in which we put T11|x=ε = (∂xu2(0))

2/2− gu2(0). Simple calcula-
tion gives

F 1
−qq(a) = −

1

2
q2
(
1−

√
a

a∗

)2

, (22)

where
a∗ =

q

g
.

We see that the force is repulsive one. It contains the one-dimensional scalar
Coulomb force F 1

Coul = −q2/2 as the leading term when a� a∗.
The solution (14) and formula (22) for the force are valid when a ∈

(0, a∗]. When the distance a between the charges is equal to a∗, the charges
become completely screened by the scalar field. When a > a∗, each charge
is surrounded by a compact cloud of the field of the width a∗. The clouds
do not overlap — in between them there is the region with the ground state
field ϕ = 0. Thus the charges do not feel the presence of each other, and the
force, of course, vanishes. Such screening has been observed already in [9]
in the case of two identical point-like charges qq located at x = 0 and x = a.
In this case, the force exerted on the charge located at x = 0 is given by the
following formula

F 1
qq(a) =

1

2
q2
(
1− a

a∗

)
. (23)

Apart from the difference in sign, which means that F 1
qq(a) is an attractive

force, we see a different dependence on the distance a. Because this difference
disappears when we put the coupling constant g = 0, it is related to the
presence of the nonlinear sign ϕ term in the field equation (4).

3. The three-body forces

Let us now consider three identical point charges of the strength q located
at the points x = −a, x = 0, and x = b, where a, b > 0. In this case, Eq. (4)
takes the form

−∂2xϕ+ g sign ϕ = qδ(x+ a) + qδ(x) + qδ(x− b) . (24)

The Ansatz for the solution has the form

ϕqqq(x) =



0 x ≤ −a− d− ,
w1(x) x ∈ [−a− d−,−a] ,
w2(x) x ∈ [−a, 0] ,
w3(x) x ∈ [0, b] ,
w4(x) x ∈ [b, b+ d+] ,
0 x ≥ b+ d+ ,

(25)
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where d+, d− > 0 are constants. All functions wi(x), i = 1, . . . , 4, are
strictly positive inside their domains, so they have the general form (12).
The nontrivial part of the function ϕqqq(x) is depicted in Fig. 2.

Fig. 2. Schematic picture of the nontrivial part of the solution (25) for the case of
three identical charges.

The constants in these functions and the constants d± are determined
from the matching conditions which ensure continuity of ϕqqq everywhere
and continuity of ∂xϕqqq at x = −a− d−, x = b+ d+, and from the ‘Gauss
law’ relations of the type (10) at x = −a, x = 0, x = b. Because the
pertinent calculations are straightforward and completely analogous to the
ones presented in the −qq case, we just quote the results:

w1(x) = 1
2 g (x+ a+ d−)

2 , (26)

w2(x) = 1
2 g (x+ a+ d−)

2 − q(x+ a) , (27)

w3(x) = 1
2 g (x− b− d+)

2 + q(x− b) , (28)

w4(x) = 1
2 g (x− b− d+)

2 , (29)

where
d− = 3

2 a∗ −
1
3 b−

2
3 a , d+ = 3

2 a∗ −
2
3 b−

1
3 a . (30)

The solution (25) is correct provided that a and b are not too large,
otherwise one charge (or more) will be completely screened by the compact
cloud of the scalar field, as discussed in [9]. Such a screened charge decouples
from the others. In such cases, in between the clouds there are segments of
the x axis where the field has its ground state value ϕ = 0, and the force
on such a distant charge exactly vanishes. More precisely, for the validity of
the solution (25), a and b should satisfy the following bounds

2a+ b < 3a∗ , a+ 2b < 3a∗ . (31)

The decoupling of the charge located at x = −a from the two other occurs
when a = 3a∗/2− b/2. This can be found by checking when the function w2

has a zero in the interval (−a, 0). If w2 < 0 in that interval, the function (25)
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ceases to be the solution of Eq. (24). The decoupling of the charge located
at x = b takes place when b = 3a∗/2 − a/2. In this case, one should check
positivity of the w3 function.

It is clear from the considerations at the beginning of Section 2 that the
total force exerted on the charge located at x = −a is given by the formula

F−a = − T11(w2)|x=−a = q2
(
1− 2a+ b

3a∗

)
. (32)

This force is the attractive one.
Let us compare this force with the sum of two-body forces exerted on

this charge by the charges located at x = 0 and x = b. For the two-body
forces we use formula (23) assuming that a < a∗, a + b < a∗, so that our
charge is in the interaction range of the two other charges. We obtain

F2body(−a) = q2
(
1− 2a+ b

2a∗

)
.

The difference

F3body(−a) = F−a − F2body(−a) = q2
2a+ b

6a∗

gives the three-body component of the total force exerted on that charge.
This component is negligibly small if a � a∗, b � a∗ (when the constant
scalar Coulomb force dominates), but it cannot be neglected if the distances
between the charges become comparable with a∗.

The force exerted on the charge located at x = 0 also has a three-body
component. The total force is calculated from the formula

F0 = T11(w2)|x=0 − T11(w3)|x=0 = q2
a− b
3a∗

.

On the other hand, the sum of two-body forces exerted by the neighboring
charges is equal to

F2body(0) = q2
a− b
2a∗

.

Here, we assume that a, b � a∗, so that the use of formula (23) is formally
justified. Again, the three-body component,

F3body(0) = F0 − F2body(0) = q2
b− a
6a∗

,

can have a sizable magnitude.
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The total force exerted on the charge located at x = b is given by the
formula

Fb = T11(w3)|x=b = −q
2

(
1− a+ 2b

3a∗

)
.

It differs from the force F−a by the sign, and a and b are interchanged, as
expected in view of the spatial structure of our qqq system.

4. Summary and remarks

1. We have found the exact form of the scalar field in the presence of
two and three point-like external charges in one dimensional space.
For simplicity, we have considered only the −qq and qqq systems, but
a generalization to charges of arbitrary strength is straightforward.
The fields have the parabolic, compact tails that are characteristic for
models with the V-shaped self-interactions. Next, we have calculated
the forces exerted on the charges. Our main finding is that the forces
are shaped mainly by the self-coupling of the mediating field. Only at
the very short distances (a � a∗) the familiar scalar Coulomb force
dominates, and the self-interaction of the field is not important.

2. Particularly interesting is the presence of the three-body force. Gen-
eralizing our result, we expect that in a system of N particles coupled
to a non-linear field all n-body forces will appear with n = 2, 3, . . . , N .
We have seen that the three-body force can have a significant strength.
This would cast a shadow on attempts to model dynamics of many
particle systems by Hamiltonians that include only two-particle inter-
actions. The importance of the many-body forces has recently been
emphasized in, e.g., [12] in the context of nuclear physics, and in [13]
in condensed matter physics.

3. It is clear that nonlinear field-theoretic effects in interactions of systems
of many particles are, in general, present and important. As a good
illustration of this point one may take the results presented in [14],
where an explanation of rotation curves of galaxies without invoking
the concept of dark matter is proposed. It would be very interesting
to investigate the many-body forces in the case of particles coupled to
a non-Abelian gauge field of the SU(n) type.
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